B= 1 / Ix-2I + 3
tìm giá trị lớn nhất của biểu thức sau
1 Tìm GTNN của biểu thức
a,A=I2x-4I+3-2x
b,B=Ix+1I+Ix+2I+Ix+3I+x+4I
2 Tìm giá trị lớn nhất của biểu thức
A=Ix-2I-Ix-7I
1 Tìm GTNN của biểu thức
a,A=I2x-4I+3-2x
b,B=Ix+1I+Ix+2I+Ix+3I+x+4I
2 Tìm giá trị lớn nhất của biểu thức
A=Ix-2I-Ix-7I
1 Tìm GTNN của biểu thức
a,A=I2x-4I+3-2x
b,B=Ix+1I+Ix+2I+Ix+3I+x+4I
2 Tìm giá trị lớn nhất của biểu thức
A=Ix-2I-Ix-7I
1 Tìm GTNN của biểu thức
a,A=I2x-4I+3-2x
b,B=Ix+1I+Ix+2I+Ix+3I+x+4I
2 Tìm giá trị lớn nhất của biểu thức
A=Ix-2I-Ix-7I
1 Tìm GTNN của biểu thức
a,A=I2x-4I+3-2x
b,B=Ix+1I+Ix+2I+Ix+3I+x+4I
2 Tìm giá trị lớn nhất của biểu thức
A=Ix-2I-Ix-7I
Tìm giá trị lớn nhất của biểu thức: B=x+1/Ix-2I
\(B=\frac{x+1}{\left|x-2\right|}\left(ĐKXĐ:x\ne2\right)\)
ta có\(\left|x-2\right|\ge0\Rightarrow\frac{x+1}{\left|x-2\right|}\le0\)
dấu = xảy ra khi x+1=0=>x=-1
zậy
1.Tìm giá trị lớn nhất của: A=7*Ix-3I-I4x+8I-I2-3xI
2.Tìm giá trị nhỏ nhất của;B=Ix+1/2I+Ix+1/3I
3.Tồn tại 1 số tự nhiên để phân số: 7n-8/2n-3 có giá trị lớn nhất.Tìm GtLn đó
4.Khi biến x nguyên thì biểu thức:7-x/x-5 có GTNN.Tìm GtNN đó?
Mong m.n giúp.
4. A=7-x/x-5=(-(x-5)+2)/x-5=-1+2/x-5
A nhỏ nhất khi 2/x-5 nhỏ nhất.mà 2/x-5 nho nhất khi x-5 lớn nhất(a)
TH1: x-5>0=>x>5=>2/x-5>0(1)
Th2:x-5<0=>x<5=>2/x-5<0(2)
(1), (2)=>x-5<0(b)
(a),(b)=>x-5=-1=>x=4
vậy A nhỏ nhất là -3
Giá trị lớn nhất của biểu thức P=1/Ix-2I+4
P lớn nhất <=> |x-2|+4 nhỏ nhất
Vì \(\left|x-2\right|\ge0=>\left|x-2\right|+4\ge4\) (với mọi x)
\(=>P=\frac{1}{\left|x-2\right|+4}\le\frac{1}{4}\)
Dấu "="xảy ra \(< =>\left|x-2\right|=0< =>x=2\)
Vậy MaxP=1/4 khi x=2
Giá trị lớn nhất của biểu thức P=1/Ix-2I+4 là \(\frac{118}{27}\) nha
Trần Thị Hiềnb1: cho a+b+c=1. chứng minh rằng ab+bc+ca<1 phần 2
b2:tính giá trị nhỏ nhất của biểu thức P=Ix-2I+Ix-3I
b3:tính giá trị nhỏ và lớn nhất của biểu thức A=x^2-x+1 phần x^2+x+1
mong các thánh nhân chỉ dạy
Bài 1: -Sửa đề: a,b,c>0
-Ta c/m: \(a+b+c\ge\sqrt{3\left(ab+bc+ca\right)}\)
\(\Leftrightarrow\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\)
\(\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ca\right)\ge3\left(ab+bc+ca\right)\)
\(\Leftrightarrow a^2+b^2+c^2\ge ab+bc+ca\)
\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca\ge0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\) (luôn đúng)
-Vậy BĐT đã được c/m.
-Quay lại bài toán:
\(\sqrt{3\left(ab+bc+ca\right)}\le a+b+c=1\)
\(\Rightarrow3\left(ab+bc+ca\right)\le1\)
\(\Rightarrow ab+bc+ca\le\dfrac{1}{3}< \dfrac{1}{2}\left(đpcm\right)\)
Bài 2:
-Ta c/m BĐT \(\left|A\right|+\left|B\right|\ge\left|A+B\right|\) với A,B là các phân thức.
\(\Leftrightarrow\left(\left|A\right|+\left|B\right|\right)^2\ge\left(\left|A+B\right|\right)^2\)
\(\Leftrightarrow A^2+2\left|A\right|\left|B\right|+B^2\ge A^2+2AB+B^2\)
\(\Leftrightarrow\left|A\right|\left|B\right|\ge AB\) (luôn đúng)
-Vậy BĐT đã được c/m.
-Dấu "=" xảy ra khi \(\left[{}\begin{matrix}A,B\ge0\\A,B\le0\end{matrix}\right.\)
-Quay lại bài toán:
\(P=\left|x-2\right|+\left|x-3\right|=\left|x-2\right|+\left|3-x\right|\ge\left|x-2+3-x\right|=\left|1\right|=1\)
\(P=1\Leftrightarrow\left[{}\begin{matrix}\left(x-2\right)\left(3-x\right)\ge0\\\left(x-2\right)\left(3-x\right)\le0\end{matrix}\right.\Leftrightarrow2\le x\le3\)
-Vậy \(P_{min}=1\)
Bài 3:
\(A=\dfrac{x^2-x+1}{x^2+x+1}=\dfrac{x^2+x+1-2x}{x^2+x+1}=1-\dfrac{2x}{x^2+x+1}\)
*Khi \(x=0\) thì:
\(A=1-\dfrac{2.0}{0+0+1}=1-0=1\).
*Khi \(x>0\) thì:
-Áp dụng BĐT AM-GM cho 2 số dương ta có:
\(x+\dfrac{1}{x}\ge2\sqrt{x.\dfrac{1}{x}}=2\)
\(A=1-\dfrac{2x}{x^2+x+1}=1-\dfrac{2}{x+1+\dfrac{1}{x}}\ge1-\dfrac{2}{2+1}=\dfrac{1}{3}\)
\(A=\dfrac{1}{3}\Leftrightarrow x=1\left(tmđk\right)\)
-Vậy \(A_{min}=\dfrac{1}{3}\)
-Khi \(x< 0\) thì: Đặt \(x=-y\left(y>0\right)\).
-Áp dụng BĐT AM-GM cho 2 số dương ta có:
\(y+\dfrac{1}{y}\ge2\sqrt{y.\dfrac{1}{y}}=2\)
\(\Rightarrow-x-\dfrac{1}{x}\ge2\)
\(\Rightarrow x+\dfrac{1}{x}\le-2\).
\(A=1-\dfrac{2x}{x^2+x+1}=1-\dfrac{2}{x+1+\dfrac{1}{x}}\le1-\dfrac{2}{-2+1}=3\)
\(A=3\Leftrightarrow x=-1\left(tmđk\right)\)
-Vậy \(A_{max}=3\)