Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyen Thanh Tung
Xem chi tiết
Nguyen Thanh Tung
Xem chi tiết
Nguyễn Bá Thọ
Xem chi tiết
Nguyen Thanh Tung
Xem chi tiết
Nguyen Thanh Tung
Xem chi tiết
Nguyễn Trần Hải Đăng
Xem chi tiết
IS
8 tháng 4 2020 lúc 21:04

\(B=\frac{x+1}{\left|x-2\right|}\left(ĐKXĐ:x\ne2\right)\)

ta có\(\left|x-2\right|\ge0\Rightarrow\frac{x+1}{\left|x-2\right|}\le0\)

dấu = xảy ra khi x+1=0=>x=-1

zậy

Khách vãng lai đã xóa
Thành TrầnĐình
Xem chi tiết
Trương Thị Hiếu
26 tháng 1 2015 lúc 18:27

4. A=7-x/x-5=(-(x-5)+2)/x-5=-1+2/x-5

A nhỏ nhất khi 2/x-5 nhỏ nhất.mà 2/x-5 nho nhất khi x-5 lớn nhất(a)

TH1: x-5>0=>x>5=>2/x-5>0(1)

Th2:x-5<0=>x<5=>2/x-5<0(2)

(1), (2)=>x-5<0(b)

(a),(b)=>x-5=-1=>x=4

vậy A nhỏ nhất là -3

 

Trần Thị Hiền
Xem chi tiết
Hoàng Phúc
2 tháng 7 2016 lúc 21:24

P lớn nhất <=> |x-2|+4 nhỏ nhất

\(\left|x-2\right|\ge0=>\left|x-2\right|+4\ge4\) (với mọi x)

\(=>P=\frac{1}{\left|x-2\right|+4}\le\frac{1}{4}\)

Dấu "="xảy ra \(< =>\left|x-2\right|=0< =>x=2\)

Vậy MaxP=1/4 khi x=2

Ngô Xuân Bảo
2 tháng 7 2016 lúc 21:26

Giá trị lớn nhất của biểu thức P=1/Ix-2I+4 là \(\frac{118}{27}\) nha  

Trần Thị Hiền
Duy Đạt Vũ
Xem chi tiết
Trần Tuấn Hoàng
10 tháng 5 2022 lúc 20:31

Bài 1: -Sửa đề: a,b,c>0

-Ta c/m: \(a+b+c\ge\sqrt{3\left(ab+bc+ca\right)}\)

\(\Leftrightarrow\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\)

\(\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ca\right)\ge3\left(ab+bc+ca\right)\)

\(\Leftrightarrow a^2+b^2+c^2\ge ab+bc+ca\)

\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca\ge0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\) (luôn đúng)

-Vậy BĐT đã được c/m.

-Quay lại bài toán:

\(\sqrt{3\left(ab+bc+ca\right)}\le a+b+c=1\)

\(\Rightarrow3\left(ab+bc+ca\right)\le1\)

\(\Rightarrow ab+bc+ca\le\dfrac{1}{3}< \dfrac{1}{2}\left(đpcm\right)\)

Trần Tuấn Hoàng
10 tháng 5 2022 lúc 20:37

Bài 2:

-Ta c/m BĐT \(\left|A\right|+\left|B\right|\ge\left|A+B\right|\) với A,B là các phân thức.

\(\Leftrightarrow\left(\left|A\right|+\left|B\right|\right)^2\ge\left(\left|A+B\right|\right)^2\)

\(\Leftrightarrow A^2+2\left|A\right|\left|B\right|+B^2\ge A^2+2AB+B^2\)

\(\Leftrightarrow\left|A\right|\left|B\right|\ge AB\) (luôn đúng)

-Vậy BĐT đã được c/m.

-Dấu "=" xảy ra khi \(\left[{}\begin{matrix}A,B\ge0\\A,B\le0\end{matrix}\right.\)

-Quay lại bài toán:

\(P=\left|x-2\right|+\left|x-3\right|=\left|x-2\right|+\left|3-x\right|\ge\left|x-2+3-x\right|=\left|1\right|=1\)

\(P=1\Leftrightarrow\left[{}\begin{matrix}\left(x-2\right)\left(3-x\right)\ge0\\\left(x-2\right)\left(3-x\right)\le0\end{matrix}\right.\Leftrightarrow2\le x\le3\)

-Vậy \(P_{min}=1\)

Trần Tuấn Hoàng
11 tháng 5 2022 lúc 9:04

Bài 3:

\(A=\dfrac{x^2-x+1}{x^2+x+1}=\dfrac{x^2+x+1-2x}{x^2+x+1}=1-\dfrac{2x}{x^2+x+1}\)

*Khi \(x=0\) thì:

\(A=1-\dfrac{2.0}{0+0+1}=1-0=1\).

*Khi \(x>0\) thì: 

-Áp dụng BĐT AM-GM cho 2 số dương ta có:

\(x+\dfrac{1}{x}\ge2\sqrt{x.\dfrac{1}{x}}=2\)

\(A=1-\dfrac{2x}{x^2+x+1}=1-\dfrac{2}{x+1+\dfrac{1}{x}}\ge1-\dfrac{2}{2+1}=\dfrac{1}{3}\)

\(A=\dfrac{1}{3}\Leftrightarrow x=1\left(tmđk\right)\)

-Vậy \(A_{min}=\dfrac{1}{3}\)

-Khi \(x< 0\) thì: Đặt \(x=-y\left(y>0\right)\).

-Áp dụng BĐT AM-GM cho 2 số dương ta có:

\(y+\dfrac{1}{y}\ge2\sqrt{y.\dfrac{1}{y}}=2\)

\(\Rightarrow-x-\dfrac{1}{x}\ge2\)

\(\Rightarrow x+\dfrac{1}{x}\le-2\).

\(A=1-\dfrac{2x}{x^2+x+1}=1-\dfrac{2}{x+1+\dfrac{1}{x}}\le1-\dfrac{2}{-2+1}=3\)

\(A=3\Leftrightarrow x=-1\left(tmđk\right)\)

-Vậy \(A_{max}=3\)