cho x,y,z là số tự nhiên. Chứng minh A= 4xy(x+y)(x+y+z)(x+z)+\(y^2z^2\)
Cho x, y, z là các số tự nhiên. Chứng minh rằng:
\(M=4x\left(x+y\right)\left(x+y+z\right)\left(x+z\right)+y^2z^2\)là một số chính phương
\(M=4x\left(x+y+z\right)\left(x^2+xz+yx+yz\right)+\left(yz\right)^2\)
\(M=4\left(x^2+xy+zx\right)\left(x^2+yz+zx+xy\right)+\left(yz\right)^2\)
\(M=4\left(x^2+xy+zx\right)\left\{\left(x^2+yz+zx\right)+xy\right\}+\left(yz^2\right)\)
\(M=4\left(x^2+xy+zx\right)^2+4\left(x^2+yz+zx\right)\left(yz\right)+\left(yz\right)^2\) ( hằng đẳng thức )
\(M=\left\{2\left(x^2+xy+zx\right)\right\}^2+2.2\left(x^2+xy+zx\right)\left(yz\right)+\left(yz\right)^2\)
\(M=\left(2\left(x^2+xy+zx\right)+\left(yz\right)\right)^2\)
\(M=\left(2x^2+2xy+zx+yz\right)^2\)
\(M=4x\left(x+y\right)\left(x+y+z\right)\left(x+z\right)+y^2z^2\)
\(=2x\left(x+y+z\right)2\left(x+y\right)\left(x+z\right)+y^2z^2\)
\(=\left(2x^2+2xy+2xz\right)\left(2x^2+2xy+2xz+2yz\right)+y^2z^2\)
Đặt \(2x^2+2xy+2xz+yz=a\)
\(M=\left(a-yz\right)\left(a+yz\right)+y^2z^2\)
\(=a^2-y^2z^2+y^2z^2\)
\(=a^2\)
Mà \(x;y;z\in N\Rightarrow a\in N\)
=> M là số chính phương
\(M=4\left(x^2+xy+xz\right)\left(x^2+xy+yz+zx\right)+y^2z^2\)
Đặt \(a=x^2+xy+xz\)
\(M=4a\left(a+yz\right)+y^2z^2=4a^2+4ayz+y^2z^2=\left(2a+yz\right)^2\)
Vậy \(M=\left(2x^2+2xy+2xz+yz\right)^2\)là số chính phương
Cho ba số x, y, z khác 0 và x + y + z ≠ 0 thỏa mãn điều kiện:
(y + z – 2x)/x = (z + x – 2y)/y = (x + y – 2z)/z. Hãy chứng tỏ A = [1 + x/y][1 + y/z][1 + z/x] là một số tự nhiên.
1, Phân tích thành nhân tử: 8(x + y + z)^2 - (x + y)^3 - (y + z)^3 - (z + x)^3
2,
a, Phân tích thành nhân tử: 2x^2y^2 + 2y^2z^2 + 2z^2x^2 - x^4 - y^4 - z^4
b, Chứng minh rằng nếu x, y, x là ba cạnh của 1 tam giác thì A > 0
3, Cho x, y, x là độ dài 3 cạnh của một tam giác ABC. Chứng minh rằng nếu x, y, z thỏa mãn các đẳng thức sau thì tam giác ABC là tam giác đều:
a, (x + y+ z)^2 = 3(xy + yz + zx)
b, (x + y)(y + z)(z + x) = 8xyz
c, (x - y)^2 + (y - z)^2 + (z - x)^2 = (x + y - 2z)^2 + (y + z - 2x)^2 + (z + x - 2y)^2
d, (1 + x/z)(1 + z/y)(1 + y/x) = 8
4,
a, Cho 3 số a, b, c thỏa mãn b < c; abc < 0; a + c = 0. Hãy so sánh (a + b - c)(b + c - a)(c + a -b) và (c - b)(b - a)(a - c)
b, Cho x, y, z, t là các số nguyên dương thỏa mãn x + z = y + t; xz 1 = yt. Chứng minh y = t và x, y, z là 3 số nguyên liên tiếp
5, Chứng minh rằng mọi x, y, z thuộc Z thì giá trị của các đa thức sau là 1 số chính phương
a, A = (x + y)(x + 2y)(x + 3y)(x + 4y) + y^4
b, B = (xy + yz + zx)^2 + (x + y + z)^2 . (x^2 + y^2 + z^2)
mày hỏi vả bài kiểm tra à thằng điên
Cho x; y; z là các số tự nhiên . C/m rằng: M= 4x(x+y)(x+y+z)(x+z) +y^2z^2 là số chính phương
Cho x, Y, z, khác 0,,X+y+z khác 0 thỏa mãn
Y+z-2x/x. =z+x-2y/y=x+y-2z
Cmr A =(1+x/y) (1+y/z) (1+z/x)
Là một số tự nhiên
Cho x, y, z nguyên dương. Chứng minh M = x/x+y +y/y+z =z/z+x có giá trị không phải là số tự nhiên
Ta có : \(\frac{x}{x+y}>\frac{x}{x+y+z}\)
\(\frac{y}{y+z}>\frac{y}{x+y+z}\)
\(\frac{z}{z+x}>\frac{z}{x+y+z}\)
Cộng theo vế , suy ra : \(M=\frac{x}{x+y}+\frac{y}{y+z}+\frac{z}{z+x}>\frac{x}{x+y+z}+\frac{y}{x+y+z}+\frac{z}{x+y+z}\)
\(< =>M>\frac{x+y+z}{x+y+z}=1\)(*)
Lại có : \(\frac{x}{x+y}< \frac{x+z}{x+y+z}\)
\(\frac{y}{y+z}< \frac{y+x}{y+z+x}\)
\(\frac{z}{z+x}< \frac{z+y}{z+x+y}\)
Cộng theo vế , suy ra : \(M=\frac{x}{x+y}+\frac{y}{y+z}+\frac{z}{z+x}< \frac{x+z}{x+y+z}+\frac{y+x}{x+y+z}+\frac{z+y}{x+y+z}\)
\(< =>M< \frac{2\left(x+y+z\right)}{x+y+z}=2\)(**)
Từ (*) và (**) \(< =>1< M< 2\)
Từ đó ta có điều phải chứng minh
Cho x, y, z là 3 số dương phân biệt. Biết x-y/z = 3y/x-z = x/y. Chứng minh rằng x = 2y và y = 2z
Cho x , y , z là ba số dương phân biệt. Biết \(\dfrac{x-y}{z}=\dfrac{3y}{x-z}=\dfrac{x}{y}\). Chứng minh rằng x = 2y và y = 2z.
Chứng minh rằng: M= 4x(x+y).(x+y+z).(x+z) + y^2.z^2 là bình phương của 1 số tự nhiên