Cho x, y, z là các số tự nhiên. Chứng minh rằng:
\(M=4x\left(x+y\right)\left(x+y+z\right)\left(x+z\right)+y^2z^2\)là một số chính phương
1, Phân tích thành nhân tử: 8(x + y + z)^2 - (x + y)^3 - (y + z)^3 - (z + x)^3
2,
a, Phân tích thành nhân tử: 2x^2y^2 + 2y^2z^2 + 2z^2x^2 - x^4 - y^4 - z^4
b, Chứng minh rằng nếu x, y, x là ba cạnh của 1 tam giác thì A > 0
3, Cho x, y, x là độ dài 3 cạnh của một tam giác ABC. Chứng minh rằng nếu x, y, z thỏa mãn các đẳng thức sau thì tam giác ABC là tam giác đều:
a, (x + y+ z)^2 = 3(xy + yz + zx)
b, (x + y)(y + z)(z + x) = 8xyz
c, (x - y)^2 + (y - z)^2 + (z - x)^2 = (x + y - 2z)^2 + (y + z - 2x)^2 + (z + x - 2y)^2
d, (1 + x/z)(1 + z/y)(1 + y/x) = 8
4,
a, Cho 3 số a, b, c thỏa mãn b < c; abc < 0; a + c = 0. Hãy so sánh (a + b - c)(b + c - a)(c + a -b) và (c - b)(b - a)(a - c)
b, Cho x, y, z, t là các số nguyên dương thỏa mãn x + z = y + t; xz 1 = yt. Chứng minh y = t và x, y, z là 3 số nguyên liên tiếp
5, Chứng minh rằng mọi x, y, z thuộc Z thì giá trị của các đa thức sau là 1 số chính phương
a, A = (x + y)(x + 2y)(x + 3y)(x + 4y) + y^4
b, B = (xy + yz + zx)^2 + (x + y + z)^2 . (x^2 + y^2 + z^2)
Cho x; y; z là các số tự nhiên . C/m rằng: M= 4x(x+y)(x+y+z)(x+z) +y^2z^2 là số chính phương
Chứng minh rằng: M= 4x(x+y).(x+y+z).(x+z) + y^2.z^2 là bình phương của 1 số tự nhiên
Giải các phương trình nghiệm nguyên:
a) 5x2+y2=4xy+169
b) x2+y2+z2=xy+3x+2z-4
c) x3-y3=91
d) x2+x-y2=0
e) xy=4(x+y)
f) x+y+z+t=xyzt với x;y;z;t là các số tự nhiên
1. Cho x(m+n)=y(n+p)=z(p+m) trong đó x, y, z là các số khác nhau và khác 0, chứng minh rằng: (m-n)/x(y-z)=(n-p)/y(z-x)=(p-m)/z(x-y)
2. Số tự nhiên A = 1+ 2^3^2012 là số nguyên tố hay hợp số?Giải thích?
chứng minh rằng
a) nếu (x-y)^2+(y-z)^2+(z-x)^2=(y+z-2x)^2+(z+x-2y)^2+(x+y-2z)^2 thì x=y=z
a,cho các số x,y,z khác 0 thoả mãn
\(x-2y+\frac{z}{y}=z-2x+\frac{y}{x}=x-2z-\frac{y}{z}\).Tính giá trị biểu thức A=\(\left(1+\frac{y}{x}\right)\times\left(1+\frac{y}{x}\right)=\left(1+\frac{x}{z}\right)+2020\)
b, tìm các số tự nhiên x,y thoả mãn xy+4x=35+5y
c, tìm các số tự nhiên x,y thoả mãn 2^/x/+y^2+y=2x+1
Cho x^2y-y^2x+x^2z-z^2x+y^2z+z^2y=2xyz. Chứng minh x,y,z ít nhất cũng có hai số bằng nhau hoặc đối nhau.