Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Công Minh Hoàng
Xem chi tiết
Tuan Minh Do Xuan
Xem chi tiết
Đỗ Xuân Tuấn Minh
Xem chi tiết
trần hân
Xem chi tiết
Đỗ Đức Duy
29 tháng 6 2023 lúc 15:59

a) Để chứng minh tứ giác ABFM là tứ giác nội tiếp, ta cần chứng minh góc AMB + góc AFB = 180 độ.

Góc AMB là góc giữa đường chéo BD và cạnh AB của hình vuông ABCD. Vì đường chéo BD cắt AE tại M, nên góc AMB chính là góc EAM.

Góc AFB là góc giữa đường thẳng EF và cạnh AB của hình vuông ABCD. Vì đường thẳng EF song song với cạnh AB, nên góc AFB bằng góc EAF.

Theo đề bài, góc EAF + 45 độ = 180 độ. Do đó, góc EAF = 180 - 45 = 135 độ.

Vậy, ta có góc AMB + góc AFB = góc EAM + góc EAF = 135 độ + 135 độ = 270 độ = 180 độ.

Vì tổng hai góc AMB và AFB bằng 180 độ, nên tứ giác ABFM là tứ giác nội tiếp.

b) Khi E và F di động trên các cạnh BC và CD của hình vuông ABCD, ta cần chứng minh rằng đường thẳng EF luôn tiếp xúc với một đường tròn cố định.

Gọi O là giao điểm của đường chéo BD và đường thẳng EF. Ta cần chứng minh rằng O nằm trên một đường tròn cố định khi E và F di động.

Vì góc EAF + 45 độ = 180 độ, nên góc EAF = 135 độ. Điều này có nghĩa là tam giác EAF là tam giác cân tại A.

Do đó, đường trung tuyến MN của tam giác EAF là đường cao và đường trung trực của cạnh EF. Vì M và N lần lượt là giao điểm của đường trung tuyến MN với AE và AF, nên M và N là trung điểm của AE và AF.

Vì M và N là trung điểm của hai cạnh của hình vuông ABCD, nên OM và ON là đường trung trực của AB và AD. Do đó, O nằm trên đường trung trực của cạnh AB và AD.

Vì AB và AD là hai cạnh cố định của hình vuông ABCD, nên đường trung trực của AB và AD là đường thẳng cố định. Vậy, O nằm trên một đường tròn cố định.

Vì vậy, khi E và F di động trên các cạnh BC và CD của hình vuông ABCD, đường thẳng EF luôn tiếp xúc với một đường tròn cố định.

 

Đỗ Xuân Tuấn Minh
Xem chi tiết
Hoàng Minh Nguyệt
5 tháng 9 2019 lúc 10:54

Vào tcn của mk đi ạ

Đỗ Xuân Tuấn Minh
5 tháng 9 2019 lúc 11:03

Bạn giải đi rồi m sẽ k nha, Thanks

Hoàng Đức Nguyên
Xem chi tiết
Nguyễn Quang Hải
Xem chi tiết
Đỗ Xuân Tuấn Minh
Xem chi tiết
TrịnhAnhKiệt
Xem chi tiết
Nguyễn Lê Phước Thịnh
13 tháng 10 2023 lúc 20:07

a: Xét ΔADM vuông tại D và ΔAHM vuông tại H có

AM chung

\(\widehat{DMA}=\widehat{HMA}\)

Do đó: ΔADM=ΔAHM

=>AD=AH

mà AD=AB

nên AH=AB

b: Xét ΔAHN vuông tại H và ΔABN vuông tại B có

AN chung

AH=AB

Do đó: ΔAHN=ΔABN

c: \(\widehat{MAN}=\widehat{MAH}+\widehat{NAH}\)

\(=\dfrac{1}{2}\left(\widehat{DAH}+\widehat{BAH}\right)\)

\(=\dfrac{1}{2}\cdot90^0=45^0\)