chứng tỏ rằng trong 4 số tự nhiên liên tiếp luôn có 1 số chia hết cho 4
Bài 3. Tìm các chữ số sao cho số 7a4b chia hết cho 4 và chia hết cho 7
Bài 2. Tìm số tự nhiên n để 3n +
Bài 4. Chứng tỏ rằng trong 3 số tự nhiên liên tiếp luôn có 1 số chia hết cho 3
Bài 5. Chứng tỏ rằng tổng của 4 số tự nhiên liên tiếp không chia hết cho 4
Gọi 3 số tự nhiên liên tiếp là a; a+1 và a+2
TH1: Nếu a chia hết cho 3 => Đề bài đúng
TH2: Nếu a chia 3 dư 1 => a= 3k +1 (k thuộc N)
=> a+2 = 3k+1+2= 3k+3=3(k+1) chia hết cho 3 => a+2 chia hết cho 3 => Đề bài đúng
TH3: Nếu a chia 3 dư 2 => a=3k +2 (k thuộc N)
=> a + 1 = 3k + 2 + 1 = 3k +3 = 3(k+1) chia hết cho 3 => a+1 chia hết cho 3 => Đề bài đúng
TH1 , TH2 , TH3 => Trong 3 số tự nhiên liên tiếp luôn có 1 số chia hết cho 3 (ĐPCM)
Bài 5:
Gọi 4 số tự nhiên liên tiếp là b; b+1; b+2 và b+3
Tổng 4 số: b + (b+1) + (b+2) + (b+3) = (b+b+b+b) + (1+2+3) = 4b + 6 = 4(b+1) + 2
Ta có: 4(b+1) chia hết cho 4 vì 4 chia hết cho 4
Nhưng: 2 không chia hết cho 4
Nên: 4(b+1)+2 không chia hết cho 4
Tức là: b+(b+1)+(b+2)+(b+3) không chia hết cho 4
Vậy: Tổng 4 số tự nhiên liên tiếp không chia hết cho 4 (ĐPCM)
Bài 3:
\(\overline{7a4b}\) ⋮ 4 ⇒ \(\overline{4b}\)⋮ 4 ⇒ b = 0; 4; 8
Nếu b = 0 ta có: \(\overline{7a40}\)⋮ 7
⇒ 7040 + a \(\times\) 100 ⋮ 7
1005\(\times\) 7+ 5 + 14a + 2a ⋮ 7
5 + 2a ⋮ 7 ⇒ 2a = 2; 9; 16⇒ a = 1; \(\dfrac{9}{3}\);8 (1)
Nếu b = 8 ta có: \(\overline{7a4b}\) = \(\overline{7a48}\)⋮ 7
⇒ 7048 + a\(\times\) 100 ⋮ 7
1006\(\times\) 7 + 6 + 14a + 2a ⋮ 7
6 + 2a ⋮ 7 ⇒ 2a = 1; 8; 15 ⇒ a = \(\dfrac{1}{2}\); 4; \(\dfrac{15}{2}\) (2)
Nếu b = 4 ta có: \(\overline{7a4b}\) = \(\overline{7a44}\) ⋮ 7
⇒ 7044 + 100a ⋮ 7
1006.7 + 2 + 14a + 2a ⋮ 7
2 + 2a ⋮ 7 ⇒ 2a = 5; 12;19 ⇒ a = \(\dfrac{5}{2}\); 6; \(\dfrac{9}{2}\) (3)
Kết hợp (1); (2); (3) ta có:
(a;b) = (1;0); (8;0); (4;8); (6;4)
a)tổng của 3 số tự nhiên liên tiếp có chia hết cho 3 không
b)tổng của 4 số tự nhiên liên tiếp có chia hết cho 4 không
c)chứng tỏ rằng trong 3 số tự nhiên liên tiếp có 1 số chia hết cho 3
d)chứng tỏ rằng trong 4 số tự nhiên liên tiếp có 1 số chia hết cho 4
a)
gọi 3 STN liên tiếp là a ;a+1;a+2
=>a+a+1+a+2=a+a+a+1+2=3a+3=3(a+1) chia hết cho 3
=> .. có
b)
gọi 4 STN liên tiếp là a;a+1;a+2;a+3
=>a+a+1+a+2+a+3=a+a+a+a+6=4a+6
=> ko chia hết cho 4
Bài 1:
a) Chứng tỏ rằng trong 3 số tự nhiên liên tiếp có 1 số chia hết cho 3
b) Chứng tỏ rằng trong 4 số tự nhiên liên tiếp có 1 số chia hết cho 4
Câu 1: chứng tỏ rằng
a) trong 2 số tự nhiên liên tiếp , có 1 số chia hết cho 2
b) trong số tự nhiên liên tiếp, có 1 số chia hết cho 3
Câu 2 * Chứng tỏ rằng
a) Tổng của 3 số tự nhiên liên tiếp là 1 số chia hết cho 3
b) Tổng của bốn số tự nhiên liên tiếp là 1 số ko chia hết cho 4
Câu 3*: Chứng tỏ rằng số có dạng aaaaaa bao giờ cũng chia hết cho 7 (chẳng hạn : 333 333 chia hết cho 7 )
Câu 4* : Chứng tỏ rằng lấy 1 số có 2 chữ số,cộng vs số gồm 2 chữ số ấy viết theo thứ tự ngược lại, ta luôn luôn đc 1 số chia hết cho 11 ( chẳng hạn : 37+73= 110 chia hết cho 11)
BẠN NÀO GIẢI RA ĐẦU TIÊN MK SẼ TICK " Nhớ là phải trình bày thì mk mới tick "
a) Tổng của ba số tự nhiên liên tiếp có chia hết cho 3 không ?
b) Tổng của bốn số tự nhiên liên tiếp có chia hết cho 4 không ?
c) Chứng tỏ rằng trong ba số tự nhiên liên tiếp có một số chia hết cho 3
d) Chứng tỏ rằng trong bốn số tự nhiên liên tiếp có một số chia hết cho 4
A, CÓ
B,KHÔNG
C,GOI BA SO TU NHIEN LIEN TIEP LA A,A+1, A+2,
(a+a+a)+ (1+2)
3a+3 chia hết cho 3
vi 3chia hết cho 3
vậy tổng 3 số tự nhiên liên tiếp chia hết cho 3
gọi 4 số tự nhiên liên tiếp là a,á+1,a+2,a+3
(a+a+a+a)+(1+2+3)
4a+6 không chia hết cho 3 vì 4 không chia hết cho 3
vậy tổng 4 số tự nhiên liên tiếp không chia hết cho 3
nếu câu a và câu b có vì sao thì sẽ làm thế nào
Đáp án của mik là:..............
Nhớ k cho mik nha!
a) Tổng các số tự nhiên liên tiếp có chia hết cho 3 ko ?
b) Tổng của bốn số tự nhiên liên tiếp có chia hết cho 4 ko ?
c) Chứng tỏ rằng trong ba số tự nhiên liên tiếp có một số chia hết cho 3.
d) Chứng tỏ rằng trong bốn số tự nhiên liên tiếp có một số chia hết cho 4.
CHòi oi bố đăng nhiều thế con die
a, có
b, ko
c, XÉT 3stn liên tiếp: a,a+1,a+2 (a E N) a có dạng: 3k;3k+1;3k+2 (k E N)
d, tương tự c
d,
Gọi 4 số tự nhiên liên tiếp đó là k;k+1.k+2.k+3
nếu k chia hết cho 4 thì -> điều phài cm
nếu k chia cho 4 dư 1 thì k+3 chia hết cho 4 -> điều phài cm
nếu k chia cho 4 dư 2 thì k+2 chia hết cho 4 -> điều phài cm
nếu k chia cho 4 dư 3 thì k+1 chia hết cho 4 -> điều phài cm
c,
Gọi 3 số tự nhiên liên tiếp là a, a +1, a + 2 ( a thuộc N )
Ta xét 3 trường hợp :
TH1: a chia cho 3 dư 0
Suy ra : a chia hết cho 3
TH2: a chia cho 3 dư 1
Ta có : a = 3q + 1
a + 2 = 3q +1 + 2
a + 2 = 3q + 3
a + 2 = 3q + 3 .1
a + 2 = 3.(q + 1 )
Suy ra : a +2 chia hết cho 3
TH3 : a chia cho 3 dư 2
Ta có : a = 3q + 2
a + 1 = 3q +2 + 1
a + 1 = 3q + 3
a + 1 = 3q + 3 .1
a + 1 = 3.(q + 1)
Suy ra : a + 1 chia hết cho 3
Vậy trong 3 số tự nhiên liên tiếp có duy nhất 1 số chia hết cho 3
Đề bài:
a) Tổng của 3 số tự nhiên liên tiếp có chia hết cho 3 ko?
b) Tổng của 4 số tự nhiên liên tiếp có chia hết cho 4 ko?
c) Chứng tỏ rằng trong ba số tự nhiên liên tiếp có một số chia hết cho 3.
d) Chứng tỏ rằng trong bốn số tự nhiên liên tiếp có một số chia hết cho 4.
Giúp mik nhé!
a)Gọi 3 STN liên tiếp đó là a,a+1,a+2
Ta có: a+(a+1)+(a+2)=3a+3\(⋮\)3
b)Gọi 4 STN liên tiếp đó là a,a+1,a+2,a+3
Ta có: a+(a+1)+(a+2)+(a+3)=4a+6
4a \(⋮\)4, 6 ko chia hết cho 4 nên 4 STN liên tiếp ko chia hết cho 4
c)https://olm.vn/hoi-dap/detail/1244453028.html?pos=715628858
d)https://olm.vn/hoi-dap/detail/89811124041.html?pos=188188079430
a)Gọi 3 STN liên tiếp đó là a,a+1,a+2
Ta có: a+(a+1)+(a+2)=3a+3⋮⋮3
b)Gọi 4 STN liên tiếp đó là a,a+1,a+2,a+3
Ta có: a+(a+1)+(a+2)+(a+3)=4a+6
4a ⋮⋮4, 6 ko chia hết cho 4 nên 4 STN liên tiếp ko chia hết cho 4
a)Tổng của ba số tự nhiên liên tiếp có chia hết cho 3 không ?
b)Tổng của bốn số tự nhiên liên tiếp có chia hết cho 4 không ?
c)Chứng tỏ rằng trong 3 số tự nhiên liên tiếp có một số chia hết cho 3 .
d)Chứng tỏ rằng trong 4 số tự nhiên liên tiếp có một số chia hết cho 4 .
Giúp Dii với nha mn <3
d,
Gọi 4 số tự nhiên liên tiếp đó là k;k+1.k+2.k+3
nếu k chia hết cho 4 thì -> điều phài cm
nếu k chia cho 4 dư 1 thì k+3 chia hết cho 4 -> điều phài cm
nếu k chia cho 4 dư 2 thì k+2 chia hết cho 4 -> điều phài cm
nếu k chia cho 4 dư 3 thì k+1 chia hết cho 4 -> điều phài cm
c,
Gọi 3 số tự nhiên liên tiếp là a, a +1, a + 2 ( a thuộc N )
Ta xét 3 trường hợp :
TH1: a chia cho 3 dư 0
Suy ra : a chia hết cho 3
TH2: a chia cho 3 dư 1
Ta có : a = 3q + 1
a + 2 = 3q +1 + 2
a + 2 = 3q + 3
a + 2 = 3q + 3 .1
a + 2 = 3.(q + 1 )
Suy ra : a +2 chia hết cho 3
TH3 : a chia cho 3 dư 2
Ta có : a = 3q + 2
a + 1 = 3q +2 + 1
a + 1 = 3q + 3
a + 1 = 3q + 3 .1
a + 1 = 3.(q + 1)
Suy ra : a + 1 chia hết cho 3
Vậy trong 3 số tự nhiên liên tiếp có duy nhất 1 số chia hết cho 3
a) Chứng tỏ rằng trong ba số tự nhiên liên tiếp có một số chia hết cho 3
b) Chứng tỏ rằng trong bốn số tự nhiên liên tiếp có một số chia hết cho 4
a) Chứng minh ba số tự nhiên liên tiếp chia hết cho 3
Gọi ba số tự nhiên liên tiếp đó là: \(n;\)\(n+1;\)\(n+2\)
Suy ra tích ba số đó là: \(n.\left(n+1\right).\left(n+2\right)\)
+ Với \(n:3\)dư \(1\)\(\Rightarrow\)\(n=3k+1\)\(\left(k>0\right)\)
Thay \(n=3k+1\)vào \(n+2\)ta có: \(n+2=3k+1+2=3k+3⋮3\)
+ Với \(n:3\)dư \(2\)\(\Rightarrow\)\(n=3k+2\)\(\left(k>0\right)\)
Thay \(n=3k+1\)vào \(n+1\)ta có: \(n+1=3k+1+2=3k+3⋮3\)
Vậy ba số tự nhiên liên tiếp luôn chia hết cho 3
b) Chứng minh bốn số tự nhiên liên tiếp chia hết cho 4
Gọi ba số tự nhiên liên tiếp đó là: \(n;\)\(n+1;\)\(n+2;\)\(n+3\)
Suy ra tích ba số đó là: \(n.\left(n+1\right).\left(n+2\right).\left(n+4\right)\)
+ Với \(n:4\)dư \(1\)\(\Rightarrow\)\(n=4k+1\)\(\left(k>0\right)\)
Thay \(n=4k+1\)vào \(n+3\)ta có: \(n+3=4k+1+3=4k+4⋮4\)
+ Với \(n:4\)dư \(2\)\(\Rightarrow\)\(n=4k+2\)\(\left(k>0\right)\)
Thay \(n=4k+2\)vào \(n+2\)ta có: \(n+2=4k+2+2=4k+4⋮4\)
+ Với \(n:4\)dư \(3\)\(\Rightarrow\)\(n=4k+3\)\(\left(k>0\right)\)
Thay \(n=4k+3\)vào \(n+1\)ta có: \(n+1=4k+1+3=4k+4⋮4\)
Vậy bốn số tự nhiên liên tiếp luôn chia hết cho 4
\(a)\) Gọi ba số tự nhiên liên tiếp là \(a,a+1,a+2\)
Nếu \(a⋮3\) thì bài toán được chứng minh
Nếu \(a⋮3̸\) thì \(a=3k+1\) hoặc \(a=3k+2\left(k\in N\right)\)
Nếu \(a=3k+1\) thì \(a+2=3k+1+2=3k+3⋮3\)
(vì \(3k⋮3\)và \(3⋮3\) nên\(3k+3⋮3\))
Nếu \(a=3k+2\) thì \(a+1=3k+2+1=3k+3⋮3\)
(vì \(3k⋮3\) và \(3⋮3\) nên \(3k+3⋮3\))
Vậy trong ba số tự nhiên liên tiếp, có \(1\) số chia hết cho \(3\)
\(b)\)Đặt \(4\) số tự nhiên liên tiếp là: \(n,n+1,n+2,n+3\)
Nếu \(n⋮4\) thì bài toán đc chứng minh
Nếu \(n⋮4\) dư \(1\) \(\Rightarrow\) \(4k+1\) \(\Rightarrow\) \(n=3=4k+1+3=4k+4⋮4\)
Nếu \(n⋮4\) dư \(2\) \(\Rightarrow\) \(4k+2\)\(\Rightarrow\) \(n=2=4k+2+2=4k+4⋮4\)
Nếu \(n⋮4\) dư \(3\) \(\Rightarrow\) \(4k+3\)\(\Rightarrow\) \(n=1=4k+3+1=4k+4⋮4\)
Vậy trong 4 số tự nhiên liên tiếp có \(1\) số chia hết cho \(4\)