cho hàm số y=(m-1)x+2m-1 tìm m để đồ thị hàm số tạo với chiều dương trục hoành một gọc nhọn
Bài 1 : Cho hàm số y = (m + 5)x+ 2m – 10
Với giá trị nào của m thì y là hàm số bậc nhất
Với giá trị nào của m thì hàm số đồng biến.
Tìm m để đồ thị hàm số điqua điểm A(2; 3)
Tìm m để đồ thị cắt trục tung tại điểm có tung độ bằng 9.
Tìm m để đồ thị đi qua điểm 10 trên trục hoành .
Tìm m để đồ thị hàm số song song với đồ thị hàm số y = 2x -1
Chứng minh đồ thị hàm số luôn đi qua 1 điểm cố định với mọi m.
Tìm m để khoảng cách từ O tới đồ thị hàm số là lớn nhất
Bài 2: Cho đường thẳng y=2mx +3-m-x (d) . Xác định m để:
Đường thẳng d qua gốc toạ độ
Đường thẳng d song song với đường thẳng 2y- x =5
Đường thẳng d tạo với Ox một góc nhọn
Đường thẳng d tạo với Ox một góc tù
Đường thẳng d cắt Ox tại điểm có hoành độ 2
Đường thẳng d cắt đồ thị Hs y= 2x – 3 tại một điểm có hoành độ là 2
Đường thẳng d cắt đồ thị Hs y= -x +7 tại một điểm có tung độ y = 4
Đường thẳng d đi qua giao điểm của hai đường thảng 2x -3y=-8 và y= -x+1
Bài 3: Cho hàm số y=( 2m-3).x+m-5
Vẽ đồ thị với m=6
Chứng minh họ đường thẳng luôn đi qua điểm cố định khi m thay đổi
Tìm m để đồ thị hàm số tạo với 2 trục toạ độ một tam giác vuông cân
Tìm m để đồ thị hàm số tạo với trục hoành một góc 45o
Tìm m để đồ thị hàm số tạo với trục hoành một góc 135o
Tìm m để đồ thị hàm số tạo với trục hoành một góc 30o , 60o
Tìm m để đồ thị hàm số cắt đường thẳng y = 3x-4 tại một điểm trên 0y
Tìm m để đồ thị hàm số cắt đường thẳng y = -x-3 tại một điểm trên 0x
Bài4 (Đề thi vào lớp 10 tỉnh Hải Dương năm 2000,2001) Cho hàm số y = (m -2)x + m + 3
a)Tìm điều kiện của m để hàm số luôn luôn nghịch biến .
b)Tìm điều kiện của m để đồ thị cắt trục hoành tại điểm có hoành độ bằng 3.
c)Tìm m để đồ thị hàm số y = -x + 2, y = 2x –1 và y = (m - 2)x + m + 3 đồng quy.
d)Tìm m để đồ thị hàm số tạo với trục
Bài 1:
Đặt: (d): y = (m+5)x + 2m - 10
Để y là hàm số bậc nhất thì: m + 5 # 0 <=> m # -5
Để y là hàm số đồng biến thì: m + 5 > 0 <=> m > -5
(d) đi qua A(2,3) nên ta có:
3 = (m+5).2 + 2m - 10
<=> 2m + 10 + 2m - 10 = 3
<=> 4m = 3
<=> m = 3/4
(d) cắt trục tung tại điểm có tung độ bằng 9 nên ta có:
9 = (m+5).0 + 2m - 10
<=> 2m - 10 = 9
<=> 2m = 19
<=> m = 19/2
(d) đi qua điểm 10 trên trục hoành nên ta có:
0 = (m+5).10 + 2m - 10
<=> 10m + 50 + 2m - 10 = 0
<=> 12m = -40
<=> m = -10/3
(d) // y = 2x - 1 nên ta có:
\(\hept{\begin{cases}m+5=2\\2m-10\ne-1\end{cases}}\) <=> \(\hept{\begin{cases}m=-3\\m\ne\frac{9}{2}\end{cases}}\) <=> \(m=-3\)
Giả sử (d) luôn đi qua điểm cố định M(x0; y0)
Ta có: \(y_0=\left(m+5\right)x_0+2m-10\)
<=> \(mx_0+5x_0+2m-10-y_0=0\)
<=> \(m\left(x_o+2\right)+5x_0-y_0-10=0\)
Để M cố định thì: \(\hept{\begin{cases}x_0+2=0\\5x_0-y_0-10=0\end{cases}}\) <=> \(\hept{\begin{cases}x_0=-2\\y_0=-20\end{cases}}\)
Vậy...
Cho hàm số: (d): y=(3-m).x+m+1
a) Tìm m để hàm số là hàm số bậc nhất
b) Tìm m để đồ thị hàm số cắt trục hoành tại điểm có hoành độ bằng -2
c) Tìm m để đồ thị hàm số cắt đường thẳng y= -x+4 tại 1 điểm trên trục tung
d) Tìm m để đồ thị hàm số tạo với 2 trục tam giác có diện tích bằng 2
e) Tìm điểm cố định mà đồ thị hàm số luôn qua với mọi m
Cho hàm số y=(m+1)x+m-2 (d)
1. Tìm m để d luôn song song với dường thẳng y=2x-3
2.Tìm m để d đi qua A(1;3)
3.Tìm m để đồ thị của hàm số tạo với chiều dương trục hoành một bằng 45 độ
4. Tìm m để đồ thị hàm số cắt trục hoành tại điểm có hoành độ bằng 1
5.Tìm m để đồ thị hàn số cắt trục tung tại điểm có tung độ bằng -4
6. Tìm m để đồ thị của các hàm số y=2x-1 , y=x+2 và d đồng quy
7.Tìm m để d vuông góc với đường thẳng y=(m-2)x=5
8. Tìm điểm mà đường thẳng d luôn đi qua với mọi m
Cho hàm số y=(2m-3)x+m-5
Tìm m để đồ thị hàm số tạo với trục hoành một góc 45 độ
Cho hàm số: y = (2m - 3)x + m - 5.
a) Vẽ đồ thị với m = 6.
b) Chứng minh họ đường thẳng luôn đi qua điểm cố định khi m thay đổi.
c) Tìm m để đồ thị hàm số tạo với 2 trục tọa độ một tam giác vuông cân.
d) tìm m để đồ thị hàm số tạo với trục hoành một góc 45 độ.
e) tìm m để đồ thị hàm số cắt đường thẳng y= 3x-4 tại 1 điểm trên Oy.
f) tìm m để đồ thị hàm số cắt đường thẳng y= 3x-4 tại 1 điểm trên Ox.
Cho hàm số y =(m – 3)x + 2 có đồ thị là (d)
a) Tìm m để đồ thị hàm số cắt trục hoành tại điểm có hoành độ bằng – 3. Khi đó (d) tạo với trục Ox một góc nhọn hay góc tù. Vì sao?
Cho hàm số y = (m – 3)x + 2 có đồ thị là (d)
a) Đồ thị hàm số cắt trục hoành tại điểm có hoành độ bằng – 3 khi:
0 = (m - 3).(-3) + 2 ⇔ 3m = 11 ⇔ m = 11/3
Khi đó (d) có phương trình là:
y = (11/3 - 3)x + 2 = 2/3 x + 2
Có hệ số a = 2/3 > 0
⇒ (d) tạo với trục Ox một góc nhọn
Cho hàm số y = (m + 1)x + 2m - 5 (d)
1. Tìm m để đồ thị hàm số cắt trục hoành tại điểm có hoành độ bằng -7.
2. Tìm m để đồ thị hàm số cắt trục tung tại điểm có tung độ bằng 3.
3. Tìm m để (d) đi qua gốc tọa độ.
1: Thay x=-7 và y=0 vào (d), ta được:
-7(m+1)+2m-5=0
=>-7m-7+2m-5=0
=>-5m-12=0
=>m=-12/5
2: Thay x=0 và y=3 vào (d), ta được:
0(m+1)+2m-5=3
=>2m-5=3
=>2m=8
=>m=4
3: Thay x=0 và y=0 vào (d), ta được:
0(m+1)+(2m-5)=0
=>2m-5=0
=>m=5/2
Cho hàm số y=(m-1)x+m+3
a) Tìm giá trị của m để đồ thị hàm số song song với đồ thị hàm số y=-2x+1
b) Tìm gtrị của m để đồ thị của hàm số đi qua điểm (1;-4)
c) Tìm điểm cố định mà đồ thị của hàm số luôn đi qua với mọi m
d) Tìm giá trị của m để đồ thị của hàm số tạo với trục tung và trục hoành một tam giác có diện tích bằng 1(đvdt)
a) y=(m-1)x+m+3 (d1) (a=m-1;b=m+3)
y=-2x+1 (d2) (a' =-2;b' =1)
vì hàm số (d1) song song với hàm số (d2) nên
\(\hept{\begin{cases}a=a'\\b\ne b'\end{cases}}\Leftrightarrow\hept{\begin{cases}m-1=-2\\m+3\ne1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}m=-1\\m\ne-2\end{cases}}\)
vậy với m= -1 thì hàm số (d1) song song với hàm số (d2)
b) vì hàm số (d1) đi qua điểm (1;-4) nên
x=1 ; y= -4
thay vào (d1) ta có
-4=m-1+m+3 (mình làm tắt ko nhân với 1 nha)
-4=2m+2
-2=2m
m=-1
Cho hàm số bậc nhất y=(2m-1)x+m-3. Tìm m để hàm số bậc nhất đi qua 2 điểm có tọa độ 2,5. Tìm m để đồ thị hàm số cắt trục hoành tại điểm có hoành độ = căn 2 -1. Chứng minh rằng đồ thị hàm số luôn đi qua 1 điểm cố định với mọi m.