Tìm x,y,z thuộc Z biết:
(x-y)^3 + (y-2)^2 + (z-2) = 2019^2020
c) Tìm các số nguyên dương x, y, z biết: (x – y)3 + (y – z)2 + 2017 |x- z| = 2019^2020
tìm x,y thuộc Z biết
a)25-y2=8(x-2019)2
b)|2018-x|+|2019-x|+|2020-x|=2
a) Ta có:\(8\left(x-2019\right)^2⋮8\Rightarrow25-y^2⋮8\)\(\left(1\right)\)
Mặt khác: \(8\left(x-2019\right)^2\ge0\Rightarrow25-y^2\ge0\)\(\left(2\right)\)
Từ\(\left(1\right),\left(2\right)\)ta có: \(y^2=1;9;25\)
Xét:\(y^2=1\Rightarrow8\left(x-2019\right)^2=24\Rightarrow\left(x-2019\right)^2=3\left(ktm\right)\)
\(y^2=9\Rightarrow8\left(x-2019\right)^2=16\Rightarrow\left(x-2019\right)^2=2\left(ktm\right)\)
\(y^2=25\Rightarrow8\left(x-2019\right)^2=0\Rightarrow\left(x-2019\right)^2=0\Rightarrow x-2019=0\Rightarrow x=2019\left(tm\right)\)
Vậy \(y=5;x=2019\)
\(y=-5;x=2019\)
Tìm x,y thuộc Z biết: x^3+2018x=2020^2019+4
Tìm x y z thuộc tập Z biết (x - 3)^2 + (y - 4)² + (x^2 - xz)^2020 = 0
Ta có ( x - 3 )2 + ( y - 4 )2 + ( x2 - xz )2020 = 0
Vì ( x - 3 )2 ≥ 0 với ∀x
( y - 4 )2 ≥ 0 với ∀y
( x2 - xz )2020 ≥ 0 với ∀x; ∀z
⇒ ( x - 3 )2 + ( y - 4 )2 + ( x2 - xz )2020 ≥ 0
Dấu " = " xảy ra khi
\(\left\{{}\begin{matrix}\left(x-3\right)^2=0\\\left(y-4\right)^2=0\\\left(x^2-xz\right)^{2020}=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x-3=0\\y-4=0\\x^2-xz=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=3\\y=4\\z=3\end{matrix}\right.\)
Vậy x = 3; y = 4; z = 3
Tìm x ,y, z biết: x-y=2018; y-z = -2019; z+x= 2020
. Tìm x ,y, z biết: x-y=2018; y-z = -2019; z+x= 2020
Tìm x,y thuộc Z biết :2020^x+2018y=2019
Bài 1: a) Tìm x biết : 2019 |x - 2019| + ( x - 2019 )2 = 2018 |2019 - x|
b) TÌm x thuộc Z và y thuộc Z* thỏa mãn : \(2x+\frac{1}{7}=\frac{1}{y}\)
tìm x,y,z biết :x-y=2019;y-z=-2020;z+x=2021
Ta có: (x-y) + (y-z) + (z+x) = 2019 + (-2020) + 2021
x-y+y-z+z+x=2020
2x = 2020
x = 2020 : 2
x = 1010
Suy ra : y = 1010 - 2019 = -1009
z = 2021 - 1010= 1011
Vậy x= 1010 , y = -1009 , z = 1011