Những câu hỏi liên quan
Trần Thị Thảo Ngọc
Xem chi tiết
Hoàng Phú Huy
25 tháng 3 2018 lúc 12:11

  Áp dụng BĐT côsi ta có: 

a² + bc ≥ 2.a√(bc) 

<=> 1/(a² + bc) ≤ 1/(2a√(bc)) -------------(1) 

tương tự vậy: 

1/(b² + ac) ≤ 1/(2b√(ac)) -------------------(2) 

1/(c² + ab) ≤ 1/(2c√(ab)) -------------------(3) 

lấy (1) + (2) + (3) 

=> 1/(a² + bc) + 1/(b² + ac) + 1/(c² + ab) ≤ 1/(2a√(bc)) + 1/(2b√(ac)) + 1/(2c√(ab)) 

<=>1/(a² + bc) + 1/(b² + ac) + 1/(c² + ab) ≤ √(bc)/2abc + √(ac)/2abc + √(ab)/2abc 

<=>1/(a² + bc) + 1/(b² + ac) + 1/(c² + ab) ≤ [√(bc) + √(ac) + √(ab) ]/2abc (!) 

Ta chứng minh bổ đề: 

√(ab) + √(bc) + √(ac) ≤ a + b + c 

thật vậy, áp dụng BĐT côsi ta được: 

a + b ≥ 2√(ab) --- (*) 

a + c ≥ 2√(ac) --- (**) 

b + c ≥ 2√(bc) --- (***) 

lấy (*) + (**) + (***) => 2(a + b + c) ≥ 2.[ √(bc) + √(ac) + √(ab) ] 

<=> √(bc) + √(ac) + √(ab) ≤ a + b + c (@) 

từ (!) và (@) 

=> 1/(a² + bc) + 1/(b² + ac) + 1/(c² + ab) ≤ (a + b + c)/2abc ( Đpcm )

zZz Cool Kid_new zZz
15 tháng 7 2020 lúc 22:56

Áp dụng AM - GM:

\(\frac{1}{a^2+bc}\le\frac{1}{2a\sqrt{bc}};\frac{1}{b^2+ac}\le\frac{1}{2b\sqrt{ca}};\frac{1}{c^2+ab}\le\frac{1}{2c\sqrt{ab}}\)

Khi đó:

\(\frac{1}{a^2+bc}+\frac{1}{b^2+ca}+\frac{1}{c^2+ab}\le\frac{1}{2a\sqrt{bc}}+\frac{1}{2b\sqrt{ca}}+\frac{1}{2c\sqrt{ab}}\)

\(=\frac{\sqrt{ab}+\sqrt{bc}+\sqrt{ca}}{2abc}\le\frac{a+b+c}{2abc}\)

Khách vãng lai đã xóa
Dra Hawk
Xem chi tiết
Trần Quốc Đạt
18 tháng 12 2016 lúc 10:21

Cauchy ở mẫu \(a^2+bc\ge2a\sqrt{bc}\)

Vậy vế trái \(\le\frac{1}{2a\sqrt{bc}}+\frac{1}{2b\sqrt{ca}}+\frac{1}{2c\sqrt{ab}}=\frac{\sqrt{ab}+\sqrt{bc}+\sqrt{ca}}{2abc}\)

Và lượng trên tử bé hơn bằng \(ab+bc+ca\)

Trần Quốc Đạt
18 tháng 12 2016 lúc 10:22

Mình đánh nhầm, dòng cuối cùng là \(a+b+c\)

Khôi 2k9
Xem chi tiết
Nguyễn Đức Tiến
26 tháng 10 2020 lúc 20:53

impostor

Khách vãng lai đã xóa
Khôi 2k9
26 tháng 10 2020 lúc 20:57

Vì a, b, c là độ dài ba cạnh của tam giác suy ra :a,b, c >0

Áp dụng bđt cosi ta có

\(a^2+bc\ge2a\sqrt{bc}\)

\(b^2+ac\ge2b\sqrt{ac}\)

\(c^2+ab\ge2c\sqrt{ab}\)

Suy ra 

\(\frac{1}{a^2+bc}+\frac{1}{b^2+ac}+\frac{1}{c^2+ab}\le\frac{1}{2a\sqrt{bc}}+\frac{1}{2b\sqrt{ac}}+\frac{1}{2c\sqrt{ab}}\)

\(=\frac{1}{2}\left(\frac{\sqrt{bc}+\sqrt{ac}+\sqrt{ab}}{abc}\right)\left(1\right)\)

Theo bđt cosi \(\frac{a+b}{2}\ge\sqrt{ab}\)

do đó  (1) \(\Leftrightarrow\frac{1}{2}\left(\frac{\sqrt{bc}+\sqrt{ac}+\sqrt{ab}}{abc}\right)\le\frac{1}{2}\left(\frac{\frac{b+c}{2}+\frac{a+c}{2}+\frac{a+b}{2}}{abc}\right)\)

\(=\frac{1}{2}\left(\frac{a+b+c}{abc}\right)=\frac{a+b+c}{2abc}\left(2\right)\)

Từ (1) và (2) suy ra \(\frac{1}{a^2+bc}+\frac{1}{b^2+ac}+\frac{1}{c^2+ab}\le\frac{a+b+c}{2abc}\left(đpcm\right)\)

Khách vãng lai đã xóa
Hoàng Minh
Xem chi tiết
Sakura
Xem chi tiết
Incursion_03
16 tháng 2 2019 lúc 22:18

1, Áp dụng bất đẳng thức Cô-si cho 2 số dương ta được

\(\frac{bc}{a}+\frac{ab}{c}\ge2\sqrt{\frac{bc}{a}.\frac{ab}{c}}=2b\)

\(\frac{ac}{b}+\frac{ab}{c}\ge2\sqrt{\frac{ac}{b}.\frac{ab}{c}}=2a\)

\(\frac{ac}{b}+\frac{bc}{a}\ge2\sqrt{\frac{ac}{b}.\frac{bc}{a}}=2c\)
Cộng từng vế vào ta được 

\(2\left(\frac{bc}{a}+\frac{ac}{b}+\frac{ab}{c}\right)\ge2\left(a+b+c\right)\)

\(\Leftrightarrow\frac{bc}{a}+\frac{ac}{b}+\frac{ab}{c}\ge a+b+c\)
Dấu "=" khi a = b = c

Incursion_03
16 tháng 2 2019 lúc 22:26

2,Vì a,b,c là 3 cạnh của tam giác nên a,b,c > 0 

Ta có các bđt quen thuộc sau : \(\frac{m}{n}>\frac{m}{m+n}\)và \(\frac{m}{n}< \frac{m+m}{m+n}\)

\(\Rightarrow\frac{m}{m+n}< \frac{m}{n}< \frac{m+m}{m+n}\). Áp dụng bđt này ta được 

\(\frac{a}{a+b+c}< \frac{a}{b+c}< \frac{a+a}{a+b+c}\)

\(\frac{b}{a+b+c}< \frac{b}{a+b+c}< \frac{b+b}{a+b+c}\)

\(\frac{c}{a+b+c}< \frac{c}{a+b}< \frac{c+c}{a+b+c}\)

Cộng 3 bđt trên lại ta được đpcm

lethuylinh
Xem chi tiết
hoàng trang
Xem chi tiết
Nguyễn Việt Lâm
30 tháng 8 2020 lúc 17:34

\(VT\le\frac{1}{2\sqrt{a^2bc}}+\frac{1}{2\sqrt{b^2ac}}+\frac{1}{2\sqrt{c^2ab}}=\frac{1}{2}\left(\frac{1}{\sqrt{ab.ac}}+\frac{1}{\sqrt{ab.bc}}+\frac{1}{\sqrt{ac.bc}}\right)\)

\(VT\le\frac{1}{4}\left(\frac{1}{ab}+\frac{1}{ac}+\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}+\frac{1}{bc}\right)=\frac{1}{2}\left(\frac{a+b+c}{abc}\right)\)

Dấu "=" xảy ra khi \(a=b=c\)

Nguyễn Việt Lâm
30 tháng 8 2020 lúc 22:24

Tất cả đều là BĐT Cô-si đó bạn:

\(a^2+bc\ge2\sqrt{a^2bc}\Rightarrow\frac{1}{a^2+bc}\le\frac{1}{2\sqrt{a^2bc}}\)

\(\frac{1}{\sqrt{ab.ac}}=\sqrt{\frac{1}{ab}}.\sqrt{\frac{1}{ac}}\le\frac{1}{2}\left(\frac{1}{ab}+\frac{1}{ac}\right)\) (chính là BĐT Cô-si dạng \(\sqrt{xy}\le\frac{1}{2}\left(x+y\right)\) thôi)

Miku chan
Xem chi tiết
Minh Triều
7 tháng 5 2016 lúc 21:12

\(\frac{b^2+c^2-a^2}{bc}+\frac{c^2+a^2-b^2}{ac}+\frac{a^2+b^2-c^2}{ab}\)

\(=\frac{b^2+\left(c-a\right)\left(c+a\right)}{bc}+\frac{c^2+\left(a-b\right)\left(a+b\right)}{ac}+\frac{a^2+\left(b-c\right)\left(b+c\right)}{ab}\)

\(>\frac{b^2+\left(c-a\right).b}{bc}+\frac{c^2+\left(a-b\right).c}{ac}+\frac{a^2+\left(b-c\right).a}{ab}\)(BĐT tam giác)

\(=\frac{b+c-a}{c}+\frac{c+a-b}{a}+\frac{a+b-c}{b}\)

rồi sao đứng bánh r

Tony Tony Chopper
7 tháng 5 2016 lúc 21:59

Giải bằng lập luận tương đương nhá

Ta có: \(A=\frac{b^2+c^2+2bc-a^2}{bc}+\frac{c^2+a^2-2ca-b^2}{ac}+\frac{a^2+b^2-2ab-c^2}{ab}>0\)

\(\Leftrightarrow A=\frac{\left(b+c\right)^2-a^2}{bc}+\frac{\left(c-a\right)^2-b^2}{ac}+\frac{\left(a-b\right)^2-c^2}{ab}>0\)

\(\Leftrightarrow A=\frac{\left(b+c-a\right)\left(a+b+c\right)}{bc}+\frac{\left(c-a-b\right)\left(b+c-a\right)}{ac}+\frac{\left(a-b-c\right)\left(a+c-b\right)}{ab}>0\)

cmđ cái phân số đầu >0

2p/s sau quy đồng, lấy nhân tử chung là b+c-a là ra

NGUUYỄN NGỌC MINH
Xem chi tiết
Mr Lazy
9 tháng 10 2015 lúc 18:10

\(\frac{1}{a^2+bc}\le\frac{1}{2\sqrt{a^2bc}}=\frac{\sqrt{bc}}{2abc}\)

\(VT\le\frac{\sqrt{bc}+\sqrt{ca}+\sqrt{ab}}{2abc}\le\frac{a+b+c}{2abc}\)

\(\left(\text{bđt }x^2+y^2+z^2\ge xy+yz+zx\right)\)