Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trang Khanh
Xem chi tiết
Edogawa conan
Xem chi tiết
Nguyễn Lê Phước Thịnh
5 tháng 7 2022 lúc 13:59

Câu 2: 

a: Xét ΔABC có AD/AB=AE/AC

nên DE//BC

=>BDEC là hình thang

mà góc B=góc C

nên BDEC là hình thang cân

b: Xét ΔDEB có

N là trung điểm của DE

M là trung điểm của DB

Do đó: MN là đường trung bình

=>MN//EB và MN=EB/2(1)

Xét ΔECB có

P là trung điểm của EC

Q là trung điểm của BC

Do đó: PQ là đường trung bình

=>PQ//BE và PQ=BE/2(2)

từ (1) và (2) suy ra MN//PQ và MN=PQ

=>MNPQ là hình bình hành

Xét ΔDEC có

N là trung điểm của DE
P là trung điểm của EC
Do đó: NP là đường trung bình

=>NE=DC/2=NM

=>NMQP là hình thoi

Đào Thị Lê Na
Xem chi tiết
cao minh tuấn
Xem chi tiết
Nguyễn Thiện Nhân
Xem chi tiết
nguyen thi vang
11 tháng 1 2018 lúc 14:15

A B C D E N M P Q H

a) Xét \(\Delta ADE\) có :

\(AD=AE\left(gt\right)\)

=> \(\Delta ADE\) cân tại A

Mà có : \(\Delta ABC;\Delta ADE\) \(\widehat{A}:chung\)

=> \(\widehat{ADE}=\widehat{ABC}\)

Mà : 2 góc này ở vị trí đồng vị

=> \(\text{DE // BC}\)

=> Tứ giác BDEC là hình thang

Mặt khác : \(\widehat{ABC}=\widehat{ACB}\left(t.c\Delta cân\right)\)

=> Tứ giác BDCE là hình thang cân

b) Xét \(\Delta DEC\) có :

\(DN=NE\left(gt\right)\)

\(EP=PC\left(gt\right)\)

=> NP là đường trung bình trong \(\Delta DEC\)

=> \(\text{ NP// CD}\)\(NP=\dfrac{1}{2}CD\) (1)

Xét \(\Delta BDC\) có :

\(BM=MD\left(gt\right)\)

\(BQ=QC\left(gt\right)\)

=> MQ là đường trung bình trong \(\Delta BDC\)

=> \(\text{MQ // CD}\)\(MQ=\dfrac{1}{2}CD\) (2)

Từ (1) và (2) => \(\left\{{}\begin{matrix}NP=MQ\\\text{NP//MQ}\end{matrix}\right.\)

=> Tứ giác MNPQ là hình bình hành

Lại xét \(\Delta BDE\) có :

\(DM=MB\left(gt\right)\)

\(DN=NE\left(gt\right)\)

=> \(NM\) là đường trung bình trong \(\Delta BDE\)

=> \(NM=\dfrac{1}{2}BE\)

Ta thấy : \(BD=CE\) (tính chất chất hình thang cân BDCE)

=> \(NP=NM\)

Do đó : Tứ giác MNPQ là hình thoi.

tranthaovan
Xem chi tiết
5S ONLINE
Xem chi tiết
Thi Trương
Xem chi tiết
Nguyễn Lê Dung
Xem chi tiết