Có tồn tại hay không một dãy gồm 2019 số tự nhiên liên tiếp mà các số đó đều là hợp số ??
Nhạnh hộ mk nha
Có tồn tại hay không một dãy gồm 2019 số tự nhiên liên tiếp mà tất cả các số đó đều là hợp số. Giải thích vì sao????
KO VI neu 2 ,3 la snt 4 da la hs roi
Tồn tại hay không 1 dãy số gồm 2019 số tự nhiên liên tiếp mà các số đó đều là hợp số?
Có tồn tại , ta chứng minh như sau :
Đặt S = 2 . 3 . 4...... .2019 . 2020
Xét 2019 số tự nhiên liên tiếp :
S + 2 ; S + 3 ; S + 4 ; ......; S + 2020
Ta có :
S + 2 = 2 . 3 .4 ...... . 2019 . 2020 + 2 = 2 . ( 3 .4 . 5 ..... .2019 . 2020 + 1 ) là hợp số
S + 3 = 2 . 3 . 4 ...... . 2019 . 2020 + 3 = 3 . ( 2 . 4 . 5 ....... .2019 .2020 + 1 ) là hợp số
.......
S + 2020 = 2 . 3 .4 ........ .2019 . 2020 + 2020 = 2020 . ( 2 .3 .4 . 5 ....... 2019 + 1 ) là hợp số
\(\Rightarrow\)ĐPCM
1) Tìm tất cả các số nguyên tố để p^4+8^p cũng là số nguyên tố
2)Có tồn tại 2019 số tự nhiên liên tiếp nào mà tổng các bình phương của 2019 số tự nhiên liên tiếp đó là số chính phương không ?
Có tồn tại hay không 1001 số tự nhiên liên tiếp đều là hợp số
Gọi 1000 số tự nhiên liên tiếp dầu tiên là a , a + 1 , a + 2 , .... , a+1000.
Theo đề bài ta có :
a + a + 1 + a + 2 + a +3 +... + a + 1000
1000a + ( 1 + 2 + 3 + ... + 1000 ) từ 1 đến 1000 có 1000 số tự nhiên
1000a + 500500
Ta thấy :
1000a là hợp số , 500500 là hợp số
Vậy : 1000 số tự nhiên liên tiếp đầu tiên là hợp số.
Gọi 1000 số tự nhiên liên tiếp dầu tiên là a , a + 1 , a + 2 , .... , a+1000.
Theo đề bài ta có :
a + a + 1 + a + 2 + a +3 +... + a + 1000
1000a + ( 1 + 2 + 3 + ... + 1000 ) từ 1 đến 1000 có 1000 số tự nhiên
1000a + 500500
Ta thấy :
1000a là hợp số , 500500 là hợp số
Vậy : 1000 số tự nhiên liên tiếp đầu tiên là hợp số.
Gọi A=2.3.4.5.6.7.8.9.........1001
Khi đó A+2;....;A+1000;A+1001 là các số tự nhiên liên tiếp
TA có
A+2=2.3....1001+2=2(3.4.5.6....1001+1) (hợp số)
A+3=2.3.4...1001+3=3(2.4......1001+1) (hợp số)
...............
A+1001=2.3.4....1001+1001=1001(2.3...100) hợp số
Vậy có tồn tại dãy 1000 số tự nhiên liên tiếp đều là hợp số
Một số nguyên dương n được gọi là "số điên cuồng" nếu tồn tại các số tự nhiên a, b > 1 để n = ab + b . Hỏi có tồn tại không một dãy gồm 2023 số nguyên dương liên tiếp sao cho trong dãy đó có chứa đúng 2018 số điên cuồng?
hok bt đâu
yr7rtftyftr6t6t
Cho số tự nhiên k \(\ge\)1 . Chứng minh rằng tồn tại một dãy gồm k số tự nhiên liên tiếp là các hợp số .
ta có dãy số
(k+1)!+2+(k+1)!+3+..........+(k+1)!+(k+1)
dãy số trên có k số hạng
xét số hạng bất kì (k+1)!+m(2<m<k+1)
ta có(k+1)!chia hết cho m và m chia hết cho m
suy ta (k+1)!+m là hs
có tồn tại hay không một dãy gồm 50 số sao cho 17 số liên tiếp nào cũng có tổng là số dương, còn tổng của bất kì 10 số liên tiếp nào của dãy cũng là số âm?
Giả sử tồn tại 50 số thảo mãn đề bài
Gọi các số đó lần lượt là a1, a2, a3, a4, ... a50
Theo bài ra ta có:
a1 + a2 + a3 + ... + a10 < 0 (1)
a11 + a12 + ... + a20 < 0
=> a1 + a2 + ... + a20 < 0
Mà a1 + a2 + ... + a17 > 0 (theo đề bài)
=> a18 + a19 + a20 < 0
Mà a11 + a12 + ... + a20 < 0
=> a11 + a12 + a13 + ... + a17 < 0 (2)
Từ (1), (2), ta có: a1 + a2 + a3 + ... + a17 < 0 (mâu thuẫn với đề bài)
Vậy, không tồn tại 50 số thoả mãn yêu cầu đề bài
Giả sử tồn tại 50 số thảo mãn đề bài
Gọi các số đó lần lượt là a1, a2, a3, a4, ... a50
Theo bài ra ta có:
a1 + a2 + a3 + ... + a10 < 0 (1)
a11 + a12 + ... + a20 < 0
=> a1 + a2 + ... + a20 < 0
Mà a1 + a2 + ... + a17 > 0 (theo đề bài)
=> a18 + a19 + a20 < 0
Mà a11 + a12 + ... + a20 < 0
=> a11 + a12 + a13 + ... + a17 < 0 (2)
Từ (1), (2), ta có: a1 + a2 + a3 + ... + a17 < 0 (mâu thuẫn với đề bài)
Vậy, không tồn tại 50 số thoả mãn yêu cầu đề bài
Ai trên 10 điểm hỏi đáp thì mình nha mình đang cần gấp chỉ còn 59 điểm là tròn rồi mong các bạn hỗ trợ mình sẽ đền bù xứng đáng
Có tồn tại 1000 số tự nhiên liên tiếp đều là hợp số không ?
Giải
Có. Gọi A = 2 . 3 . 4 ... . 1001. Các số A + 2, A + 3, ..., A + 1001 là 1000 số tự nhiên liên tiếp và rõ ràng đều là hợp số ( đpcm ).
Một vấn đề được đặt ra : Có những khoảng rất lớn các số tự nhiên liên tiếp đều là hợp số. Vậy có thể đến một lúc nào đó không còn số nguyên tố nữa không ? Có số nguyên tố cuối cùng không ? Từ thế kỉ III trước Công nguyên, nhà toán học cổ Hy Lạp Ơ - clit ( Euclide ) đã chứng minh rằng : Tập hợp các số nguyên tố là vô hạn.
Gọi A=2.3.4.5.6.7.8.9.........1001
Khi đó A+2;....;A+1000;A+1001 là các số tự nhiên liên tiếp
TA có
A+2=2.3....1001+2=2(3.4.5.6....1001+1) (hợp số)
A+3=2.3.4...1001+3=3(2.4......1001+1) (hợp số)
...............
A+1001=2.3.4....1001+1001=1001(2.3...100) hợp số
Vậy có tồn tại dãy 1000 số tự nhiên liên tiếp đều là hợp số
Tớ khác hoàn toàn luôn :
Gọi 1000 số tự nhiên liên tiếp dầu tiên là a , a + 1 , a + 2 , .... , a+1000
Theo đề bài ta có :
a + a + 1 + a + 2 + a +3 +... + a + 1000
1000a + ( 1 + 2 + 3 + ... + 1000 ) từ 1 đến 1000 có 1000 số tự nhiên
1000a + 500500
Ta thấy :
1000a là hợp số , 500500 là hợp số
Vậy : 1000 số tự nhiên liên tiếp đầu tiên là hợp số
Có tồn tại 1000 số tự nhiên liên tiếp đều là hợp số không?