(\(\frac{\sqrt{\text{x}}}{\text{x}-4}+\frac{1}{\sqrt{\text{x}}-2}\text{)}\cdot\frac{\sqrt{\text{x}}-2}{2}\)
tính: \(\text{[}\sqrt{2}-1\text{]}^2-\frac{3}{2}\cdot\sqrt{\text{[}-2\text{]}^2}+\frac{4\sqrt{2}}{5}+\sqrt{1\frac{11}{25}}\cdot\sqrt{2}\)
Chứng minh: \(\sqrt{x}\cdot\text{[}1-\sqrt{x}\text{]}\le\frac{1}{4}v\text{ới}x\ge0\)
TÍNH : \(\left(\sqrt{2}-1\right)^2-\frac{3}{2}\sqrt{\left(-2\right)^2}+\frac{4\sqrt{2}}{5}+\sqrt{1\frac{11}{25}}.\sqrt{2}\)
\(=\left(\sqrt{2}-1\right)^2-\frac{3}{2}.2+\frac{4\sqrt{2}}{5}+\sqrt{\frac{36}{25}}.\sqrt{2}\)
\(=3-2\sqrt{2}-3+\frac{4\sqrt{2}}{5}+\frac{6\sqrt{2}}{5}=\frac{10\sqrt{2}}{5}-2\sqrt{2}=2\sqrt{2}-2\sqrt{2}=0\)
CHỨNG MINH :
Ta có : \(\sqrt{x}\left(1-\sqrt{x}\right)=-x+\sqrt{x}=-\left[\left(\sqrt{x}\right)^2-2.\sqrt{x}.\frac{1}{2}+\frac{1}{4}\right]+\frac{1}{4}=-\left(\sqrt{x}-\frac{1}{2}\right)^2+\frac{1}{4}\le\frac{1}{4}\)với mọi \(x\ge0\)
Vậy ta có điều phải chứng minh.
1. CHỨNG MINH ĐẲNG THỨC
a. \(\text{[}3+2\sqrt{6}-\sqrt{33}\text{]}\cdot\text{[}\sqrt{22}+\sqrt{6}+4\text{]}=24\)
b. \(\text{[}\frac{1}{5-2\sqrt{6}}+\frac{2}{5+2\sqrt{6}}\text{]}\cdot\text{[}15+2\sqrt{6}\text{]}\)
c.\(\text{[}\frac{4}{3}\cdot\sqrt{3}+\sqrt{2}+\sqrt{3\frac{1}{3}}\text{]}\cdot\text{[}\sqrt{1,2}+\sqrt{2}-4\sqrt{\frac{1}{5}}\text{]}=4\)
d. \(\sqrt{\text{[}1-\sqrt{1989}\text{]}^2}\cdot\sqrt{1990+2\sqrt{1989}}=1988\)
e. \(\frac{a-\sqrt{ab}+b}{a\sqrt{a}+b\sqrt{b}}-\frac{1}{a-b}=\frac{\sqrt{a}-\sqrt{b}-1}{a-b}\)với \(a>0;b>0\)và \(a\ne b\)
a) \(\left(3+1\sqrt{6}-\sqrt{33}\right)\left(\sqrt{22}+\sqrt{6}+4\right)\)
\(=\sqrt{3}\left(\sqrt{3}+2\sqrt{2}-\sqrt{11}\right).\sqrt{2}\left(\sqrt{11}+\sqrt{3}+2\sqrt{2}\right)\)
\(=\sqrt{6}\left(\sqrt{3}+2\sqrt{2}-\sqrt{11}\right)\left(\sqrt{3}+2\sqrt{2}+\sqrt{11}\right)\)
\(=\sqrt{6}\left[\left(\sqrt{3}+2\sqrt{2}\right)^2-11\right]=\sqrt{6}\left(11+4\sqrt{6}-11\right)=\sqrt{6}.4\sqrt{6}=6.4=24\)
b) \(\left(\frac{1}{5-2\sqrt{6}}+\frac{2}{5+2\sqrt{6}}\right)\left(15+2\sqrt{6}\right)=\left(\frac{5+2\sqrt{6}+10-4\sqrt{6}}{5^2-\left(2\sqrt{6}\right)^2}\right)\left(15+2\sqrt{6}\right)\)
\(=\left(15-2\sqrt{6}\right)\left(15+2\sqrt{6}\right)=15^2-24=201\)
C) \(\left(\frac{4}{3}.\sqrt{3}+\sqrt{2}+\sqrt{3\frac{1}{3}}\right)\left(\sqrt{1,2}+\sqrt{2}-4\sqrt{\frac{1}{5}}\right)\)
\(=\left(\frac{4}{\sqrt{3}}+\frac{\sqrt{6}}{\sqrt{3}}+\frac{\sqrt{10}}{\sqrt{3}}\right)\left(\frac{\sqrt{6}}{\sqrt{5}}+\frac{\sqrt{10}}{\sqrt{5}}-\frac{4}{\sqrt{5}}\right)\)
\(=\frac{1}{\sqrt{15}}\left(\sqrt{6}+\sqrt{10}+4\right)\left(\sqrt{6}+\sqrt{10}-4\right)=\frac{1}{\sqrt{15}}\left[\left(\sqrt{6}+\sqrt{10}\right)^2-16\right]\)
\(=\frac{1}{\sqrt{15}}\left(16+4\sqrt{15}-16\right)=\frac{4\sqrt{15}}{\sqrt{15}}=4\)
d) \(\sqrt{\left(1-\sqrt{1989}\right)^2}.\sqrt{1990+2\sqrt{1989}}=\sqrt{\left(1-\sqrt{1989}\right)^2}.\sqrt{1989+2\sqrt{1989}+1}\)
\(=\sqrt{\left(1-\sqrt{1989}\right)^2}.\sqrt{\left(\sqrt{1989}+1\right)^2}=\left(\sqrt{1989}-1\right)\left(\sqrt{1989}+1\right)=1989-1=1988\)
e) \(\frac{a-\sqrt{ab}+b}{a\sqrt{a}+b\sqrt{b}}-\frac{1}{a-b}=\frac{a-\sqrt{ab}+b}{\left(\sqrt{a}+\sqrt{b}\right)\left(a-\sqrt{ab}+b\right)}-\frac{1}{a-b}=\frac{\sqrt{a}-\sqrt{b}}{\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)}-\frac{1}{a-b}=\frac{\sqrt{a}-\sqrt{b}-1}{a-b}\)
1. Tính:
a. \(\text{[}\sqrt{ab}+2\sqrt{\frac{b}{a}}-\sqrt{\frac{a}{b}}+\sqrt{\frac{1}{ab}}\text{]}\cdot\sqrt{ab}\)
b.\(\text{[}-\frac{am}{b}\cdot\sqrt{\frac{n}{m}}-\frac{ab}{n}\cdot\sqrt{mn}+\frac{a^2}{b^2}\cdot\sqrt{\frac{m}{n}}\text{]}\cdot\text{[}a^2b^2\cdot\sqrt{\frac{n}{m}}\text{]}\)
a) \(\left(\sqrt{ab}+2\sqrt{\frac{b}{a}}-\sqrt{\frac{a}{b}}+\frac{1}{\sqrt{ab}}\right).\sqrt{ab}\) (ĐK : \(\hept{\begin{cases}a>0\\b>0\end{cases}}\)hoặc \(\hept{\begin{cases}a< 0\\b< 0\end{cases}}\))
\(=ab+2b-a+1\)
b) \(\left(-\frac{am}{b}\sqrt{\frac{n}{m}}-\frac{ab}{n}.\sqrt{mn}+\frac{a^2}{b^2}.\sqrt{\frac{m}{n}}\right)\left(a^2b^2.\sqrt{\frac{n}{m}}\right)\) (ĐK bạn tự xét nhé ^^)
\(=\left(-\frac{a\sqrt{mn}}{b}-\frac{ab\sqrt{m}}{\sqrt{n}}+\frac{a^2}{b^2}.\sqrt{\frac{m}{n}}\right)\left(a^2b^2.\sqrt{\frac{n}{m}}\right)\)
\(=a^2b^2\left(\frac{-an}{b}-ab+\frac{a^2}{b^2}\right)=-a^3bn-a^3b^3+a^4=a^3\left(a-bn-b^3\right)\)
\(choP=\left(\frac{\sqrt{x}+1}{\sqrt{x}}-\frac{2}{\sqrt{x}+1}\right):\left(\frac{\sqrt{x}}{2}+\frac{1}{2\sqrt{x}}\right)a;R\text{ú}tg\text{ọ}nP....b;T\text{í}nhPkhiX=3-2\sqrt{2}c;t\text{ì}mX\text{đ}\text{ể}P=1\)
1.Giải pt sau:(\(\sqrt{2}\) +2)(x\(\sqrt{2}\) -1)=2x\(\sqrt{2}\) -\(\sqrt{2}\)
2.Cho pt: 2(a-1).x-a(x-1)=2a+3
3.Giải pt sau:
a) \(\frac{2}{x+\frac{\text{1}}{\text{1}+\frac{x+\text{1}}{x-2}}}=\frac{6}{3x-\text{1}}\)
b) \(\frac{\frac{x+\text{1}}{x-\text{1}}-\frac{x-\text{1}}{x+\text{1}}}{\text{1}+\frac{x+\text{1}}{x-\text{1}}}=\frac{x-\text{1}}{2\left(x+\text{1}\right)}\)
1) Nhìn cái pt hết ham, nhưng bấm nghiệm đẹp v~`~
\(\left(\sqrt{2}+2\right)\left(x\sqrt{2}-1\right)=2x\sqrt{2}-\sqrt{2}\)
\(\Leftrightarrow\left(\sqrt{2}+2\right)\left(x\sqrt{2}-1\right)-2x\sqrt{2}+\sqrt{2}=0\)
\(\Leftrightarrow2x-\sqrt{2}+2x\sqrt{2}-2-2x\sqrt{2}+\sqrt{2}=0\)
\(\Leftrightarrow2x-2=0\Leftrightarrow2x=2\Rightarrow x=1\)
Mấy bài kia sao cái phương trình dài thê,s giải sao nổi
1) B=\(\left(\frac{\sqrt{x}}{2}\text{+}\frac{1}{2\sqrt{x}}\right)\left(\frac{\sqrt{x}-1}{\sqrt{x}\text{+}1}-\frac{\sqrt{x}\text{+}1}{\sqrt{x}-1}\right)\)
1)\(\int\sqrt{\frac{1-\sqrt{x}}{1+\sqrt{x}}}dx\)
2)\(\int\frac{dx}{\left(e^x+1\right)\left(x^2+1\right)}\)
3)\(\int\frac{1+2x\sqrt{1-x^2}+2x^2}{1+x+\sqrt{1+x^2}}\)dx
4)\(\int\frac{sin^6x+c\text{os}^6x}{1+6^x}dx\)
5)\(\int_0^{\frac{\pi}{2}}\frac{\sqrt{c\text{os}x}}{\sqrt{s\text{inx}}+\sqrt{c\text{os}x}}dx\)
6)\(\int\frac{x^4}{2^x+1}dx\)
7)\(\int_0^{\frac{\pi^2}{4}}sin\sqrt{x}dx\)
8)\(\int\sqrt[6]{1-c\text{os}^3x}.s\text{inx}.c\text{os}^5xdx\)
9)\(\int\sqrt{\frac{1}{4x}+\frac{\sqrt{x}+e^x}{\sqrt{x}.e^x}}dx\)
10)\(\int\frac{c\text{os}x+s\text{inx}}{\left(e^xs\text{inx}+1\right)s\text{inx}}dx\)
\(P=\frac{2x+2}{\sqrt{x}}+\frac{x\sqrt{x}-1}{x-\sqrt{x}}-\frac{x\sqrt{x}+1}{x+\sqrt{x}}a;r\text{ú}tg\text{ọ}nPb;t\text{ì}mGTNNc\text{ủa}Pc;t\text{í}nhPt\text{ạ}ix=12+6\sqrt{3}\)
B=\(\left(\frac{x\sqrt{x}}{x\text{+}\sqrt{x}\text{+}1}-\frac{1}{x\text{+}\sqrt{x}\text{+}1}\right):\frac{2}{\sqrt{x}\text{+}1}\)
Chứng minh A<0 với mọi 0<x<1