tính :\(\left(x+2\right)^2\)
áp dụng hằng đẳng thức
tìm x , bt :
\(3\left(x+2\right)^2+\left(2x-1\right)^2-7\left(x+3\right)\left(x-3\right)=36\)36
Áp dụng hằng đẳng thức tìm x
3(x + 2)^2 + (2x - 1)^2 - 7(x + 3)(x - 3) = 36
=> 3(x^2 + 4x + 4) + 4x^2 - 4x + 1 - 7(x^2 - 9) = 36
=> 3x^2 + 12x + 12 + 4x^2 - 4x + 1 - 7x^2 + 63 = 36
=> 8x + 76 = 36
=> 8x = -40
=> x = -5
áp dụng hằng đẳng thức , Thu gọn \(\left(x^2+1\right)\left(x^4-x^2+1\right)\)
tính: \(\left(2a-b\right)^2-2\times\left(2a-b\right)\times\left(a+b\right)+\left(a+b\right)^2\)
ÁP DỤNG HẰNG ĐẲNG THỨC ĐÁNG NHỚ
(2a-b)2 - 2 x ( 2a-b) x (a+b) + (a + b)2
= [(2a-b) - (a+b)]2
Áp dụng hằng đẳng thức khai triển biểu thức sau:
a, \(\left(2x^2-1\right)^2\)
b, \(\left(\dfrac{1}{2}x+3y^2\right)^2\)
a) \(\left(2x^2-1\right)^2=\left(2x^2\right)^2-2.2x^2.1+1^2\)
\(=4x^4-4x^2+1\).
b) \(\left(\frac{1}{2}x+3y^2\right)^2=\left(\frac{1}{2}x\right)^2+2.\frac{1}{2}x.3y^2+\left(3y^2\right)^2\)
\(=\frac{1}{4}x^2+3y^2x+9y^4\)
Chúc bn hc tốt!
Áp dụng hằng đẳng thức, khai triển các biểu thức sau:
a, \(\left(2x+y+3\right)^2\)
b, \(\left(x-2y+1\right)^2\)
c, \(\left(x^2-2xy^2-3\right)^2\)
\(a,\left(2x+y+3\right)^2=4x^2+y^2+9+4xy+12x+6y\)
\(b,\left(x-2y+1\right)^2=x^2+4y^2+1-4xy+2x-4y\)
\(c,\left(x^2-2xy^2-3\right)^2=x^4+2x^2y^4+9-4x^3y^2-6x^2+12xy^2\)
Áp dụng hằng đẳng thức:
\(x^2-y^2=...\)
\(\left(a+b\right)^2=....\)
ai k mk mk k lại
\(x^2-y^2=\left(x+y\right)\left(x-y\right)\)
\(\left(a+b\right)^2=a^2+2ab+b^2\)
ai k mk mk k lại
Áp dụng hằng đẳng thức khai triển biểu thức sau:
a, \(\left(3x^2-2y^3\right)^2\)
b, \(\left(-2x^2-3\right)^2\)
a) \(\left(3x^2-2y^3\right)^2\)
\(=\left(3x^2\right)^2-2\cdot3x^2\cdot2y^3+\left(2y^3\right)^2\)
\(=9x^4-12x^2y^3+4y^6\)
b) \(\left(-2x^2-3\right)^2\)
\(=\left(-2x^2\right)^2-2\cdot\left(-2x^2\right)\cdot3+3^2\)
\(=4x^4+12x^2+9\)
Áp dụng bằng hằng đẳng thức đáng nhớ để thực hiện phép chia :
a) \(\left(x^2+2xy+y^2\right):\left(x+y\right)\)
b) \(\left(125x^3+1\right):\left(5x+1\right)\)
c) \(\left(x^2-2xy+y^2\right):\left(y-x\right)\)
a) (x2 + 2xy + y2) : (x + y) = (x + y)2 : (x + y) = x + y.
b) (125x3 + 1) : (5x + 1) = [(5x)3 + 1] : (5x + 1)
= (5x)2 – 5x + 1 = 25x2 – 5x + 1.
c) (x2 – 2xy + y2) : (y – x) = (x – y)2 : [-(x – y)] = - (x – y) = y – x
Hoặc (x2 – 2xy + y2) : (y – x) = (y2 – 2xy + x2) : (y – x)
= (y – x)2 : (y – x) = y - x.
Bài giải:
a) (x2 + 2xy + y2) : (x + y) = (x + y)2 : (x + y) = x + y.
b) (125x3 + 1) : (5x + 1) = [(5x)3 + 1] : (5x + 1)
= (5x)2 – 5x + 1 = 25x2 – 5x + 1.
c) (x2 – 2xy + y2) : (y – x) = (x – y)2 : [-(x – y)] = - (x – y) = y – x
Hoặc (x2 – 2xy + y2) : (y – x) = (y2 – 2xy + x2) : (y – x)
= (y – x)2 : (y – x) = y - x.
a) (x2 +2xy + y2 ) : (x +y)
= (x +y)2 : (x +y)
= x + y
b) (125x3 + 1) : (5x + 1)
= (5x + 1)(25x2 - 5x + 1) : (5x + 1)
= 25x2 - 5x + 1
c) \(\left(x^2-2xy+y^2\right)\left(y-x\right)\)
= \(\left(x-y\right)^2:\left(y-x\right)\)
= \(x-y\)
Áp dụng các hằng đẳng thức đáng nhớ để tính :
a) \(\left(2+i\sqrt{3}\right)^2\)
b) \(\left(1+2i\right)^3\)
c) \(\left(3-i\sqrt{2}\right)^3\)
d) \(\left(2-i\right)^3\)
a) ta có : \(\left(2+i\sqrt{3}\right)^2=2^2+2.2.i\sqrt{3}+\left(i\sqrt{3}\right)^2\)
\(=4+4\sqrt{3}i-3=1+4\sqrt{3}i\)
b) ta có : \(\left(1+2i\right)^3=1^3+3.1^2.2i+3.1.\left(2i\right)^2+\left(2i\right)^3\)
\(=1+6i-6-8i=-5-2i\)
c) \(\left(3-i\sqrt{2}\right)^3=3^3-3.3^2.i\sqrt{2}+3.3.\left(i\sqrt{2}\right)^2+\left(i\sqrt{2}\right)^3\)
\(=27-27\sqrt{2}i-18-2\sqrt{2}i=9-29\sqrt{2}i\)
d) \(\left(2-i\right)^3=2^3-2.2^2.i+2.2.i^2-i^3\)
\(=8-8i-4+i=4-7i\)