C/m S=4+2^2+2^3+....+2^98 không phải là số chính phương.(giải chi tiết cho em với ạ em cần gấp lắm)
Với n là số tự nhiên, hãy chứng minh A= 2^2^n + 2017 không thể là số chính phương. Mn giúp em với em cần gấp lắm ạ.
Cho \(S=4+2^2+2^3+...+2^{98}\)
Chứng minh rằng S không là số chính phương
cần gấppp ạ thanks mn
S=4+22+23+...+298=22+22+23+...+298=2.22+23+..+298=23+23+...+298=299
Ta thấy 299 không phải là số chính phương => S cũng không phải là số chính phương (đpcm)
(Em cần lời giải chi tiết ạ! Cảm ơn mọi người)
Câu 1: Tập hợp các giá trị thực của tham số m để phương trình \(\sqrt{x^2+2x+2m}=2x+1\) có hai nghiệm phân biệt là S = (a;b]. Khi đó P = a.b là....
Câu 2: Cho phương trình \(\sqrt{-x^2+4x-3}=\sqrt{2m+3x-x^2}\). Để phương trình có nghiệm thì m ϵ [a;b]. Giá trị \(a^2+b^2=?\)
Câu 3: Biết phương trình \(x^4-3mx^2+m^2+1=0\) có 4 nghiệm phân biệt \(x_1,x_2,x_3,x_4\). Tính M = x1+x2+x3+x4+x1x2x3x4
1.
\(2x+1\ge0\Rightarrow x\ge-\dfrac{1}{2}\)
Khi đó pt đã cho tương đương:
\(x^2+2x+2m=\left(2x+1\right)^2\)
\(\Leftrightarrow x^2+2x+2m=4x^2+4x+1\)
\(\Leftrightarrow3x^2+2x+1=2m\)
Xét hàm \(f\left(x\right)=3x^2+2x+1\) trên \([-\dfrac{1}{2};+\infty)\)
\(-\dfrac{b}{2a}=-\dfrac{1}{3}< -\dfrac{1}{2}\)
\(f\left(-\dfrac{1}{2}\right)=\dfrac{3}{4}\) ; \(f\left(\dfrac{1}{3}\right)=\dfrac{2}{3}\)
\(\Rightarrow\) Pt đã cho có 2 nghiệm pb khi và chỉ khi \(\dfrac{2}{3}< 2m\le\dfrac{3}{4}\)
\(\Leftrightarrow\dfrac{1}{3}< m\le\dfrac{3}{8}\)
\(\Rightarrow P=\dfrac{1}{8}\)
3.
Đặt \(x^2=t\ge0\Rightarrow\left[{}\begin{matrix}x=\sqrt{t}\\x=-\sqrt{t}\end{matrix}\right.\)
Pt trở thành: \(t^2-3mt+m^2+1=0\) (1)
Pt đã cho có 4 nghiệm pb khi và chỉ khi (1) có 2 nghiệm dương pb
\(\Leftrightarrow\left\{{}\begin{matrix}\Delta=9m^2-4\left(m^2+1\right)>0\\t_1+t_2=3m>0\\t_1t_2=m^2+1>0\end{matrix}\right.\) \(\Rightarrow m>\dfrac{2}{\sqrt{5}}\)
Ta có:
\(M=x_1+x_2+x_3+x_4+x_1x_2x_3x_4\)
\(=-\sqrt{t_1}-\sqrt{t_2}+\sqrt{t_1}+\sqrt{t_2}+\left(-\sqrt{t_1}\right)\left(-\sqrt{t_2}\right)\sqrt{t_1}.\sqrt{t_2}\)
\(=t_1t_2=m^2+1\) với \(m>\dfrac{2}{\sqrt{5}}\)
2.
ĐKXĐ: \(1\le x\le3\)
Pt tương đương:
\(-x^2+4x-3=2m+3x-x^2\)
\(\Leftrightarrow x=2m+3\)
\(\Rightarrow\) Pt có nghiệm khi và chỉ khi \(1\le2m+3\le3\)
\(\Leftrightarrow-1\le m\le0\)
\(\Rightarrow a^2+b^2=1\)
Chứng minh số :
a) N = 20042 + 20043 + 20042 + 23 không phải là số chính phương.
b) M = 44 + 444 + 444444 + 15 không phải là số chính phương.
MÌNH ĐANG CẦN GẤP !!!!!!!!
cho tổng S=1+3+3^2+3^3+........+3^100.Chứng minh rằng S không phải là số chính phương ?
giúp em với . nhớ giải ra nhé
mình tính ra tổng S có tận cùng là 1 và 6 có đúng k ? nếu đúng thì kết luận như thế nào?
Chứng minh rằng tổng sau không là số tự nhiên:
S = \(\frac{2^2}{1.3}+\frac{3^2}{2.4}+\frac{4^2}{3.5}+\frac{5^2}{4.6}+......+\frac{99^2}{98.100}\)
Mình đang cần rất gấp! Các bạn giải chi tiết và nhanh hộ mình nhé! Ai giải chi tiết và chính xác mình sẽ tick cho! ^-^ *-* ^.^ *.*
1+3+3^2+3^3+...+3^98
a)tổng trên có chia hết cho 13 không ?
b)tổng trên có là số chính phương không ?
Giải giúp mình với ạ
Mình cần gấp chiều mình thi rồi
a) co
b) ko
~~~HOC_TOT~~~
a) Từ 1; 3; 3^2 ; ...; 3^98 có 99 số hạng có thể ghép thành 33 cặp mỗi cặp gồm 3 chữ số như sau:
\(1+3+3^2+3^3+...+3^{98}\)
\(=\left(1+3+3^2\right)+\left(3^3+3^4+3^5\right)+...+\left(3^{97}+3^{98}+3^{99}\right)\)
\(=\left(1+3+9\right)+3^3\left(1+3+9\right)+...+3^{97}\left(1+3+9\right)\)
\(=13+3^3.13+...+3^{97}.13\)
\(=13\left(1+3^3+...+3^{97}\right)⋮13\)
b) Tính tổng:
Đặt: \(A=1+3+3^2+3^3+...+3^{98}\)
=> \(3A=3+3^2+3^3+...+3^{98}+3^{99}\)
=> \(3A-A=3^{99}-1\)
=> \(2A=3^{99}-1\)
=> \(A=\frac{3^{99}-1}{2}\)
Có: \(3^{99}=3^{98}.3=9^{49}.3\)có chữ số tận cùng là 7
=> \(3^{99}-1\) có chữ số tận cùng là 6
=> A có chữ số tận cùng là 3
=> A không là số chính phương.
C= 2+4+6 + ....+2n
Hỏi C có phải là số chính phương không
(các bạn giải chi tiết giúp mình nhé)
cho A =2^2 +2^3 + 2^4 +.......+2 ^2017+2^2018
chứng minh rằng A +4 ko là số chính phương
nhanh nhé mik cần gấp
sẽ tik cho mọi ng ,giải chi tiết hộ mik nha
Có : 2A = 23 + 24 + 25 + .... + 22019
=> 2A - A = 22019 - 22
=> A = 22019 - 4
=> A + 4 = 22019 ko phải là số chính phương
Vậy ...........
Tham khảo nak
Có : \(A=2^2+2^3+2^4+...+2^{2018}\)
\(\Rightarrow2A=2^3+2^4+2^5+...+2^{2019}\)
\(\Rightarrow2A-A=2^3+...+2^{2019}-2^2-2^3-...-2^{2018}\)
\(\Rightarrow A=2^{2019}-2^2\)
\(\Rightarrow A=2^{2019}-4\)
\(\Rightarrow A+4=2^{2019}\)ko phải là scp
Vậy ..............