Cho tam giác ABC có góc BAC = 120 độ. Các đường phân giác AD, BE, CF.
a) C/m \(\frac{1}{AD}=\frac{1}{AB}+\frac{1}{AC}\)
b) Tính góc FDE
1) Cho tam giác ABCD có góc BAC=120 các phân giác AD;BE;CF
a)CMR \(\frac{1}{AD}=\frac{1}{AB}+\frac{1}{AC}\) b) Tính góc FDE
cho tam giác abc có bac=120 các phân giác trong lần lượt là ad be va cf
a,c/m 1/ad=1/ab+1/ac
b,tính fde
1.Cho tam giác ABC có góc A bằng 120 độ, đường phân giác AD. Đường phân giác ngoài tại đỉnh C cắt đường thẳng AB tại K. E là giao điểm của DK và AC. Tính góc BED?
2.Cho tam giác ABC có góc A bằng 120 độ, các đường phân giác AD, BE, CF.
a.Chứng minh DE là phân giác ngoài của tam giác ADB
b. Tính góc EDF
Cho tam giác ABC có góc BAC=120 độ.Các đường phân giác ad,be,cf.
CM:1/AD=1/AB+1/AC
Cho tam giác ABC, lấy D thuộc BC. Kẻ Bx song song với AD và Bx cắt CA tại I. Kẻ Cy song song với AD là Cy cắt CA ở K
a) Chứng minh : \(\frac{1}{BI}+\frac{1}{CK}=\frac{1}{AD}\)
b) Nếu góc BAC = 120 độ và AD là đường phân giác của tam giác ABC
Chứng minh \(\frac{1}{AB}+\frac{1}{AC}=\frac{1}{AD}\)
c) Nếu góc BAC = 90 độ và AD là đường phân giác của tam giác ABC
Chứng minh \(\frac{1}{AB}+\frac{1}{AC}=\frac{\sqrt{2}}{AD}\)
. Cho tam giác ABC với đường phân giác AD thỏa mãn \(\frac{1}{AD}=\frac{1}{AB}+\frac{1}{AC}\) . Tính số đo góc BAC.
vẽ đường song song
Hình tự vẽ =)
Kẻ \(DE//AB\left(E\in AC\right)\)
Vì AD là phân giác của \(\widehat{BAC}\)
\(\Rightarrow\widehat{BAD}=\widehat{CAD}\)
Vì \(DE//AB\)
\(\Rightarrow\widehat{ADE}=\widehat{BAD}\)
\(\Rightarrow\widehat{ADE}=\widehat{CAD}\)
\(\Rightarrow\Delta DAE\)cân tại \(E\)
\(\Rightarrow DE=AE\)
Đặt \(DE=AE=a\)
Vì \(DE//AB\)nên theo hệ quả của định lí Talet ,ta có :
\(\frac{DE}{AB}=\frac{CE}{AC}\)
\(\Rightarrow\frac{a}{AB}=\frac{AC-AE}{AC}\)
\(\Rightarrow\frac{a}{AB}=1-\frac{a}{AC}\)
\(\Rightarrow\frac{a}{AB}+\frac{a}{AC}=1\)
\(\Rightarrow\frac{1}{AB}+\frac{1}{AC}=\frac{1}{a}\)
Mà \(\frac{1}{AB}+\frac{1}{AC}=\frac{1}{AD}\)
\(\Rightarrow\frac{1}{a}=\frac{1}{AD}\)
\(\Rightarrow a=AD\)
\(\Rightarrow DE=AE=AD\)
\(\Rightarrow\Delta DAE\)đều
\(\Rightarrow\widehat{CAD}=60^o\)
\(\Rightarrow\widehat{BAC}=2\widehat{CAD}=2.60^o=120^o\)
Vậy \(\widehat{BAC}=120^o\)
Cho tam giác ABC , đường phân giác AD thỏa mãn \(\frac{1}{AD}=\frac{1}{AB}+\frac{1}{AC}\)
Tính góc BAC
Tam giác abc có ba góc nhọn đường cao AD,BE, CF cắt nhau ở H
a, chứng minh BD nhân BC = BE nhân BA
b, tam giác BDF đồng dạng với tam giác BAC
c, góc CDE bằng góc BAC
d, DH là đường phân giác góc FDE
cho tam giác ABC góc A= 120 độ; AD, BE, CF là 3 đường phân giác. Biết DE= 21 cm, DF= 20cm. Chứng minh góc FDE vuông.