Giải phương trình: \(\frac{x^6-1}{x^3}-3\frac{x^2-1}{x}-1=0\)
giải phương trình sau:\(\frac{1}{x}-\frac{1}{x+1}+\frac{1}{x+2}-\frac{1}{x+3}-\frac{1}{x+4}+\frac{1}{x+5}-\frac{1}{x+6}+\frac{1}{x+7}=0\)
giải phương trình
\(\frac{4}{x^2-3x+2}-\frac{3}{2x^2-6x+1}+1=0\\ \)
\(\frac{1}{x-1}+\frac{2}{x-2}+\frac{3}{x-3}=\frac{6}{x-6}\)
Giải phương trình :
\(\frac{x+1}{2}+\frac{x+1}{3}+\frac{x+1}{6}=0\).
\(\frac{x+1}{2}+\frac{x+1}{3}+\frac{x+1}{6}=0\)
\(\Leftrightarrow\left(x+1\right)\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{6}\right)=0\)
\(\Leftrightarrow x+1=0\Leftrightarrow x=-1\)
Vậy tập nghiệm của phương trình là \(S=\left\{-1\right\}\).
\(\frac{x+1}{2}+\frac{x+1}{3}+\frac{x+1}{6}=0\)
\(\Leftrightarrow\left(x+1\right)\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{6}\right)=0\)
\(\Leftrightarrow x+1=0\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{6}\ne0\right)\)
<=> x=-1
Vậy x=-1
\(\frac{x+1}{2}+\frac{x+1}{3}+\frac{x+1}{6}=0\)
\(< =>\left(x+1\right)\left(\frac{1}{2}\right)+\left(x+1\right)\left(\frac{1}{3}\right)+\left(x+1\right)\left(\frac{1}{6}\right)=0\)
\(< =>\left(x+1\right)\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{6}\right)=0\)
Do \(\frac{1}{2}+\frac{1}{3}+\frac{1}{6}\ne0\)
Nên \(x+1=0< =>x=-1\)
Vậy nghiệm của phương trình trên là \(\left\{-1\right\}\)
giải hệ phương trình\(\hept{\begin{cases}x+y=-6\\\sqrt{\frac{y+2}{2x-1}}+\sqrt{\frac{2x-1}{y+2}}=2\end{cases}}\)
giải phương trình \(\frac{6}{x^2-9}+\frac{4}{x^2-11}-\frac{7}{x^2-8}-\frac{3}{x^2-12}=0\)
Câu 2/
Điều kiện xác định b tự làm nhé:
\(\frac{6}{x^2-9}+\frac{4}{x^2-11}-\frac{7}{x^2-8}-\frac{3}{x^2-12}=0\)
\(\Leftrightarrow x^4-25x^2+150=0\)
\(\Leftrightarrow\left(x^2-10\right)\left(x^2-15\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x^2=10\\x^2=15\end{cases}}\)
Tới đây b làm tiếp nhé.
a. ĐK: \(\frac{2x-1}{y+2}\ge0\)
Áp dụng bđt Cô-si ta có: \(\sqrt{\frac{y+2}{2x-1}}+\sqrt{\frac{2x-1}{y+2}}\ge2\)
\(\)Dấu bằng xảy ra khi \(\frac{y+2}{2x-1}=1\Rightarrow y+2=2x-1\Rightarrow y=2x-3\)
Kết hợp với pt (1) ta tìm được x = -1, y = -5 (tmđk)
b. \(pt\Leftrightarrow\left(\frac{6}{x^2-9}-1\right)+\left(\frac{4}{x^2-11}-1\right)-\left(\frac{7}{x^2-8}-1\right)-\left(\frac{3}{x^2-12}-1\right)=0\)
\(\Leftrightarrow\left(15-x^2\right)\left(\frac{1}{x^2-9}+\frac{1}{x^2-11}+\frac{1}{x^2-8}+\frac{1}{x^2-12}\right)=0\)
\(\Leftrightarrow x^2-15=0\Leftrightarrow\orbr{\begin{cases}x=\sqrt{15}\\x=-\sqrt{15}\end{cases}}\)
1. đặt các phương trình về dạng ax+b=0 rồi giải:
a)\(\frac{3\left(x-3\right)}{4}+\frac{4x-10,5}{10}=\frac{3\left(x+1\right)}{5}+6\)(1)
b)\(\frac{x+1}{3}+\frac{3\left(2x+1\right)}{4}=\frac{2x+3\left(x+1\right)}{6}+\frac{7+12x}{12}\)(2)
c)\(\frac{3}{2}\left(x-\frac{5}{4}\right)-\frac{5}{8}=x\)(3)
2. giải phương trình sau:
a) \(x+x^2=0\)(1)
b)\(0x-3=0\)(2)
c)\(3y=0\)(3)
3. Tìm giá trị của m sao cho phương trình sau đây nhận x = - 2 làm nghiệm: 2x + m = x - 1 (1)
Nhìn sơ qua thì thấy bài 3, b thay -2 vào x rồi giải bình thường tìm m
Bài 2:
a) \(x+x^2=0\)
\(\Leftrightarrow x\left(x+1\right)=0\)
\(\Leftrightarrow\hept{\begin{cases}x=0\\x+1=0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=0\\x=0-1\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=0\\x=-1\end{cases}}\)
b) \(0x-3=0\)
\(\Leftrightarrow0x=3\)
\(\Rightarrow vonghiem\)
c) \(3y=0\)
\(\Leftrightarrow y=0\)
Giải hệ phương trình
\(\hept{\begin{cases}\frac{3}{2\text{x}-y}-\frac{6}{x+y}=1\\\frac{1}{2\text{x}-y}-\frac{1}{x+y}=0\end{cases}}\)
Đặt \(\frac{1}{2x-y}\)= a, \(\frac{1}{x +y}\)= b, ta có \(\hept{\begin{cases}3a-6b=1\\a-b=0\end{cases}}\)
Giải hệ phương trình được a=\(\frac{-1}{3}\), b=\(\frac{-1}{3}\)
GIẢI PHƯƠNG TRÌNH\(\frac{x}{2x-6}+\frac{x}{2x+2}-\frac{2x}{\left(x+1\right)\left(x-3\right)}=0\)
\(\frac{x}{2\left(x-3\right)}+\frac{x}{2\left(x+1\right)}-\frac{2x}{\left(x+1\right)\left(x+3\right)}=0\)
\(\frac{x\left(x+1\right)}{2\left(x-3\right)\left(x+1\right)}+\frac{x\left(x-3\right)}{2\left(x-3\right)\left(x+1\right)}-\frac{2.2x}{2\left(x-3\right)\left(x+1\right)}=0\)
\(\frac{x^2+x}{2\left(x-3\right)\left(x+1\right)}+\frac{x^2-3x}{2\left(x-3\right)\left(x+1\right)}-\frac{4x}{2\left(x-3\right)\left(x+1\right)}=0\)
\(\frac{x^2+x+x^2-3x-4x}{2\left(x-3\right)\left(x+1\right)}=0\)
\(\frac{2x^2-6x}{2\left(x-3\right)\left(x+1\right)}=0\)
=>\(2x^2-6x=0\)
\(2x\left(x-3\right)=0\)
=>\(x=0\)
\(x=3\)
1) Phương trình 3x-5x+5= -8 có nghiệm là?
2) Giá trị của b để phương trình 3x+b=0 có nghiệm x=-2 là?
3) Phương trình 2x+k=x-1 nhận x=2 là nghiệm khi k=?
4) Phương trình m(x-1)=5-(m-1)x vô nghiệm nếu?
5) Phương trình \(x^2\)-4x+3= 0 có nghiệm là?
6) Phương trình (2x-3)(3x+2)=6x(x-50)+44 có nghiệm là?
7) Tập nghiệm của phương trình \(\frac{5x+4}{10}+\frac{2x+5}{6}+\frac{x-7}{15}-\frac{x+1}{30}\)là?
8) Ngiệm của phương trình\(\frac{5x-3}{6}-x+1=1-\frac{x+1}{3}\)là?
9) Nghiệm của phương trình -8(1,3-2x)=4(5x+1) là?
10) Nghiệm của phương trình \(\frac{8x+5}{4}-\frac{3x+1}{2}=\frac{2x+1}{2}+\frac{x+4}{4}\)là?
11) Nghiệm của phương trình \(\frac{2\left(x+6\right)}{3}+\frac{x+13}{2}-\frac{5\left(x-1\right)}{6}+\frac{x+1}{3}+11\)là?
Help me:(((
Ai làm đc câu nào thì làm giúp mình với ạ, cảm ơn trc:(((
\(1,3x-5x+5=-8\)
\(\Leftrightarrow-2x+5+8=0\)
\(\Leftrightarrow-2x=-13\)
\(\Leftrightarrow x=\frac{13}{2}\)
Giải phương trình sau: \(\frac{1}{x+1}+\frac{4}{x+4}-\frac{2}{x+2}-\frac{3}{x+3}=0\)
giải phương trình:\(\frac{x-1}{x+3}-\frac{x}{x-3}=\frac{4x+15}{9-x^2}\)
giải bất phương trình: 2x+3<6-(3-4x)
1) \(\frac{x-1}{x+3}-\frac{x}{x-3}=\frac{4x+15}{9-x^2}\)
ĐKXĐ : \(x\ne\pm3\)
\(\Leftrightarrow\frac{x-1}{x+3}-\frac{x}{x-3}=\frac{-4x-15}{x^2-9}\)
\(\Leftrightarrow\frac{\left(x-1\right)\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}-\frac{x\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}=\frac{-4x-15}{\left(x-3\right)\left(x+3\right)}\)
\(\Leftrightarrow\frac{x^2-4x+3}{\left(x-3\right)\left(x+3\right)}-\frac{x^2+3x}{\left(x-3\right)\left(x+3\right)}=\frac{-4x-15}{\left(x-3\right)\left(x+3\right)}\)
\(\Leftrightarrow\frac{x^2-4x+3-x^2-3x}{\left(x-3\right)\left(x+3\right)}=\frac{-4x-15}{\left(x-3\right)\left(x+3\right)}\)
\(\Leftrightarrow-7x+3=-4x-15\)
\(\Leftrightarrow-7x+4x=-15-3\)
\(\Leftrightarrow-3x=-18\)
\(\Leftrightarrow x=6\)( tmđk )
Vậy x = 6 là nghiệm của phương trình
2) 2x + 3 < 6 - ( 3 - 4x )
<=> 2x + 3 < 6 - 3 + 4x
<=> 2x - 4x < 6 - 3 - 3
<=> -2x < 0
<=> x > 0
Vậy nghiệm của bất phương trình là x > 0