Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trần Long Thăng Phiên bả...
Xem chi tiết
An Nhiên
9 tháng 9 2017 lúc 21:29

Nếu cả 3 số p,q,r không chia hết cho 3 thì  \(p^2,q^2r^2\)đều chia 3 dư 1.
Do đó\(p^2+q^2+r^2\) p2+q2+r2p2+q2+r2 chia hết cho 3 và bé hơn 3 thì vô lý
vậy ta có 2 bộ (2,3,5) hoặc (3,5,7)
Thử chọn ta được bộ (3,5,7) 

Trần Long Tăng
Xem chi tiết
Ngô Duy Tin
9 tháng 9 2017 lúc 20:49

3,5,7 chac chan 100%

Nguyễn Ngọc Mai Chi
Xem chi tiết
Nguyễn Trọng Huy Hào
Xem chi tiết
Trần Trọng Nguyên
Xem chi tiết
Nguyễn Ngọc Mai Chi
Xem chi tiết
Akai Haruma
30 tháng 3 lúc 19:22

Lời giải:
Nếu $p,q,r$ đều không chia hết cho 3. Ta biết rằng 1 scp khi chia 3 chỉ có dư $0$ hoặc $1$.

$\Rightarrow p^2,q^2,r^2$ chia $3$ dư $1$

$\Rightarrow p^2+q^2+r^2$ chia $3$ dư $3$ (hay chia 3 dư 0)

$\Rightarrow p^2+q^2+r^2\vdots 3$

Mà $p^2+q^2+r^2>3$ nên không thể là số nguyên tố (trái với yêu cầu đề bài)

Do vậy tồn tại ít nhất 1 số chia hết cho 3 trong 3 số $p,q,r$. Không mất tính tổng quát, giả sử $p\vdots 3\Rightarrow p=3$.

Vì $p,q,r$ là số nguyên tố liên tiếp nên có thể xảy ra các TH: $(q,r)=(2,5)$ hoặc $(q,r)=(5,7)$

Thử thì thấy $(q,r)=(5,7)$

Vậy $(p,q,r)=(3,5,7)$ và hoán vị.

Hoàng Đạt
24 tháng 10 lúc 21:21

scp là gì

 

Âm Thầm Trong Đêm
Xem chi tiết
Nguyễn ngọc trân
Xem chi tiết
Lê Anh Tú
22 tháng 3 2017 lúc 20:17

 Giả sử 3 số nguyên tố p, q, r đều không chia hết cho 3 mà một số chính phương chia hết cho 3 hoặc chia 3 dư 1

Nếu p^2, q^2, r^2 chia hết cho 3 suy ra p^2 + q^2 + r^2 chia hết cho 3 ﴾ là hợp số, loại ﴿

Nếu p^2, q^2, r^2 cùng chia 3 dư 1 suy ra p^2 + q^2 + r^2 chia hết cho 3 ﴾ loại ﴿

Nếu trong 3 số có 1 số chia hết cho 3 suy ra p^2 + q^2 + r^2 chia 3 dư 2 ﴾ 2 số còn lại chia 3 dư 1 ﴿ loại

vì không có số chính phương nào chia 3 dư 2

Nếu trong 3 số có 1 số chia 3 dư 1 thì p^2 + q^2 + r^2 chia 3 dư 1 ﴾ 2 số còn lại chia hết cho 3 ﴿ chọn

Vậy trong 3 số p , q , r phải có ít nhất 1 số chia hết cho 3 mà p, q, r là các số nguyên tố nên có 1 số nhận giá trị là 3.

Do 1 ko là số nguyên tố nên bộ ba số nguyên tố có thể là 2 ‐ 3 ‐ 5 hoặc 3 ‐ 5 ‐ 7

Với 3 số nguyên tố là 2 ‐ 3 ‐ 5 thì p^2 + q^2 + r^2 = 2^2 + 3^2 + 5^2 = 38 ﴾ là hợp số, loại ﴿

Vậy 3 số nguyên tố cần tìm là 3 5 7 

Kim Taehyung
Xem chi tiết
Anh2Kar六
20 tháng 2 2018 lúc 9:02

p^q+q^p=r
Ta có:p^q+q^p=r suy ra r>p^q và r>q^p
Cho p^q là số chẵn suy ra p là số chẵn mà p nguyên tố suy ra p=2
Ta có: 2^q+q^2=r
p chẵn suy ra y lẻ ma y nguyên tố suy ra y là số nguyên tố lớn hơn hoặc bằng 3
Ta cho: p=2; q=3; r=17
q=3 suy ra r= 2^3+3^2=17(thỏa)
q>3 suy ra 2^q chia 3 dư 2 va q^2 chia 3 dư 1
Suy ra r chia hết cho 3(vô lí) vì r là số nguyên tố
Vậy(p;q;r)=(2;3;17);(3;2;17)