Cho △ABC nhọn có AM là đường trung tuyến, gọi I là trung điểm AM. CI cắt AB tại D. Gọi E là trung điểm BD. CM: tứ giác CDEM là hình thang
Không cần vẽ hình đâu ạ, mọi người giúp tui với mai tui kt rồi
cho tam giác ABC vuông tại A , đường trung tuyến AM , gọi D là trung điểm của AB , E là điểm đối xứng với M qua D
a) CMR : tứ giác ADMC là hình thang vuông
b) Cm : tứ giác AEMC là hình bình hành
giúp mìn ii mai mìn kt gòi:(
a: Xét ΔABC có
M là trung điểm của BC
D là trung điểm của AB
Do đó: MD là đường trung bình của ΔABC
Suy ra: MD//AC
Xét tứ giác ADMC có MD//AC
nên ADMC là hình thang
mà \(\widehat{CAD}=90^0\)
nên ADMC là hình thang vuông
Mn giúp e với ạ
Cho tam giác ABC vuông tại A có đường trung tuyến AM . Gọi D là trung điểm của AB , E là điểm đối xứng với M qua D
a/ Tính BC; AM biết AB= 9cm; AC = 12cm
b/ CM: AM=MB=MC
c/ CM: Tứ giác AEBM là hình thoi
d/ Gọi I là tr/ điểm AM
CM: ACME là hbh
CM: E, I, C thẳng hàng
e/ tìn điều kiện của tam giác ABC để AEBM là hình vuông
Mn vẽ hình luôn giúp e với ạ, e cảm ơn
Mn giúp e với ạ
Cho tam giác ABC vuông tại A có đường trung tuyến AM . Gọi D là trung điểm của AB , E là điểm đối xứng với M qua D
a/ Tính BC; AM biết AB= 9cm; AC = 12cm
b/ CM: AM=MB=MC
c/ CM: Tứ giác AEBM là hình thoi
d/ Gọi I là tr/ điểm AM
CM: ACME là hbh
CM: E, I, C thẳng hàng
e/ tìm điều kiện của tam giác ABC để AEBM là hình vuông
bài 7:cho tam giác ABC vuông tại A (AB<AC) với BC=6cm.Ddường trung tuyến AM gọi O là trung điểm của AC ,N là điểm đối xứng với M qua O .CM tứ giác AMCN là hình gì?vì sao?
AI ĐÓ GIÚP TUI VS MAI TUI KIỂM TRA RÙI !
NHỚ VẼ HÌNH NHA !THANK YOU!
Cj đăng lên hỏi đáp 247 ik có ng tl ngay
Cho tam giác ABC vuông tại A, có AM là đường trung tuyến. Gọi D là trung điểm AB, E là điểm đối xứng với M qua D.
a. CM: AEBM là hình thoi
b. Tứ giác AEMC là hình gì
c. Gọi I là trung điểm AM. CM: E,I,C thẳng hàng
Làm ơn giúp mình với!!!
mình lười quá bn tự kẻ hình nha,nếu dc thì mk làm
a.Xét tam giác ABC ( A=90°) có
BM=MC=>AM=1/2AB=BM
Xét tứ giác AEBM có hai đường chéo giao nhau tại trung điểm mỗi đường => AEBM laf hinhf binh hành
Mà HBH AEBM lại có BM=MA=> AEBM là hình thoi
Cho tam giác ABC vuông tại A, trung tuyến AM.
a) Cho AB = 6 cm, AC = 8 cm. Tính độ dài AM.
b) Kẻ MD vuông góc với AB, ME vuông góc với AC. Tứ giác ADME là hình gì? Vì
sao?
c) Tứ giác DECB là hình gì? Vì sao?
d) Gọi H, I lần lượt là trung điểm của BM và CM. Chứng minh rằng: DH = EI.
e) Tam giác ABC cần có thêm điều kiện gì để tứ giác ADME là hình vuông?
giúp tui nha plssss
a) tam giác abc vuông tại a, suy ra trung tuyến am ứng với cạnh huyền bc bằng 1/2 bc và = 5cm
b) tứ giác adme có â = 90o; d^ = 90o; ê = 90o => adme là hình chữ nhật
HT
NHỜ 500 AE GIÚP MỀNH ZS .... NGÀY MAI PHẢI NỘP OY
1. Cho tam giác ABC cân tại A có góc B=60 độ, đường cao AM. Trên tia đối của tia MA lấy điểm E sao cho ME=MAa) CM: Tứ giác ABEC là hình thoi và tính số đo góc BEC
b) Hai điểm D,E đối xứng nhau qua điểm C. Đường thẳng qua E song song với BC cắt AC tại F. Tứ giác ADFE là hình gì?Vì sao?
c) CM: Tứ giác ABEF là hình thang cân
d) Điểm C có là trực tâm của tam giác DBF không ? Giải thích?
2. Cho tam giác ABC(AB<AC), đoạn AI là đường cao và ba điểm D,E,F theo thứ tự là trung điểm của các đoạn thẳng AB,AC,BC.a) CM: Tứ giác BDEF là hình bình hànhb) Điểm J là điểm dối xứng của điểm I qua điểm E. Tứ giác AICJ là hình gì? Vì sao?
b) Điểm J là điểm đối xứng của diểm I qua điểm E. Tứ giác AICJ là hình gì? Vì sao?
c) Hai đường thẳng BE,DF cắt nhau tại K. CM : Hai tứ giác ADKE và KECF có diện tích bằng nhau
d) Tính diện tích tam giác ADE theo diện tích tam giác ABC
3. Cho tam giác ABC cân tại A, trung tuyến AM. Gọi D là điểm đối xứng của A qua M. Gọi K là trung điểm của MC, E là điểm đối xứng của D qua K.a) CM: Tứ giác ABDC là hình thoi
b) CM: Tứ giác AMCE là hình chữ nhật
c) AM và BE cắt nhau tại I. CM : I là trung điểm của BE
d) CM: AK,CI,EM đồng quy
4. Cho hình chữ nhật ABCD(AB>AD), trên cạnh AD, BC lần lượt lấy các điểm M,N sao cho AM=CN.a) CMR: BM song song với DN
b) Gọi O là trung điểm của BD. CMR: AC,BD,MN đồng quy tại O
c) Qua O vẽ đường thẳng d vuông góc với BD, d cắt AB tại P, cắt CD tại Q. CMR : PBQD là hinh thoi
d) Đường thẳng qua B song song với PQ và đường thẳng qua Q song song với BD cắt nhau tại K. CMR : AC vuông góc với CK.
5. Cho tam giác ABC cân tại Acó M là trung điểm của cạnh BC . Gọi D là điểm đối xứng với A qua M.a) CM : Tứ giác ABDC là hình thoi
b) Vẽ đường thẳng vuông góc với BC tại B cắt tia CA tại điểm F. CM: Tứ giác ADBF là hình bình hành
c) Qua C vẽ đường thẳng song song với AD cắt tia BA tại điểm E. CM: Tứ giác BCEF là hình chữ nhật
d) Nối EM cắt AC tại N, kéo dài BN cắt EC tại I. CM: SIBC = 1/4 SBCEF
6. Cho hình chữ nhật ABCD có O là giao điểm của hai đường chéo . Lấy một điểm E nằm giữa hai điểm O và B. Gọi F là điểm đối xứng với điểm A qua E và I là trung điểm của CF.a) CM: Tứ giác OEFC là hình thang và tứ giác OEIC là hình bình hành
b) Gọi H và K lần lượt là hình chiếu của điểm F trên các đường thẳng BC và CD. CM: Tứ giác CHFK là hình chữ nhật và I là trung điểm của HK
c) CM: ba điểm E,H,K thẳng hàng
Bài này có gì đâu em ! Anh làm nhé !
Chuyển vế cái cần chứng minh ta được
1/AB^2 - 1/AE^2 =1/4AF^2
hay ( AE^2 - AB^2)/AB^2.AE^2 = 1/4AF^2
hay BE^2/ 4BC^2.AE^2 = 1/AF^2
Nhân chéo hai vế ta có : BC.AE = BE.AF hay là BC/AF = BE/AE
Chuyển vế cái cần chứng minh ta được
1/AB^2 - 1/AE^2 =1/4AF^2
hay ( AE^2 - AB^2)/AB^2.AE^2 = 1/4AF^2
hay BE^2/ 4BC^2.AE^2 = 1/AF^2
Nhân chéo hai vế ta có : BC.AE = BE.AF hay là BC/AF = BE/AE
Cho tam giác nhọn ABC có AM là đường trung tuyến , gọi I là trung điểm của AM , D là giáo điểm của AB và CI , N là điểm đối xứng với D qua I .
a) chứng minh tứ giác ADMN là hình bình hành
b) chứng minh ND=NC
c) Từ D kẻ tia Dx // CM . Từ C kẻ tia Oy // DM , tia Dx và Cy cắt nhau tại K , gọi E là giáo điểm của NK và AC . Chứng minh ba điểm M,N,E thẳng hàng
1, Cho tam giác ABC vuông tại A, đường cao AH. Gọi I là trung điểm của AH, đường vuông góc với BC tại C cắt đường thẳng BI tại D. chứng minh AD=DC?
2,Cho tứ giác ABCD, O là giao điểm của 2 đường chéo. Từ một điểm I bất kì trên đường chéo BD ta vẽ đường thẳng song song với đường chéo AC, đường thẳng này cắt các cạnh AB,BC tại P, Q và cắt các tia DA, DC tại S, R.chứng minh:
a, =
B, =*
c, =
3, cho hình thang ABCD (AB//CD) có M là giao điểm của AD và BC, N là giao điểm hai đường chéo. Gọi I, K theo thứ tự là giao điểm của MN với AB, CD. Chứng minh I là trung điểm của AB, K là trung điểm của CD
4, cho tam giác ABC có AB<AC, đường phân giác AD, đường trung tuyến AM. Trên cạnh AC lấy điểm E sao cho AE=AB. gọi O, G theo thứ tự là giao điểm của BE với AD, AM.
a, chứng minh DG//AB
b, gọi I là giao điểm của MO với DG. chứng minh DG=IG
5, cho tam giác ABC có AB=5 cm, AC=7 cm, đường trung tuyến AM. lấy điểm E thuộc cạnh AB, điểm F thuộc cạnh AC sao cho AE=AF= 3 cm. gọi I là giao điểm của EF và AM .chứng minh I là trung điểm của AM
Câu 3:
Xét ΔMDC có AB//CD
nên MA/MD=MB/MC(1)
Xét ΔMDK có AI//DK
nên AI/DK=MA/MD(2)
Xét ΔMKC có IB//KC
nên IB/KC=MB/MC(3)
Từ (1), (2) và (3) suy ra AI/DK=IB/KC=MI/MK
Vì AI//KC nên AI/KC=NI/NK=NA/NC
Vì IB//DK nên IB/DK=NI/NK
=>AI/KC=IB/DK
mà AI/DK=IB/KC
nên \(\dfrac{AI}{KC}\cdot\dfrac{AI}{DK}=\dfrac{IB}{DK}\cdot\dfrac{IB}{DC}\)
=>AI=IB
=>I là trung điểm của AB
AI/DK=BI/KC
mà AI=BI
nên DK=KC
hay K là trung điểm của CD