Cho tam giác ABC cân tại A, trên tia đối của tia AC lấy điểm M, trên tia đối của tia AB lấy điểm N sao cho AM= AN.
Chứng minh tứ giác BCNM là hình thang cân
cho tam giác ABC cân tại A,trên tia đối tia AB lấy điểm M,trên tia đối AC lấy điểm N sao cho AM=AN.Chứng minh tứ giác MNBC là hình thang cân
Xét ΔAMN và ΔABC có
\(\dfrac{AM}{AB}=\dfrac{AN}{AC}\)
\(\widehat{MAN}=\widehat{BAC}\)
Do đó: ΔAMN đồng dạng với ΔABC
=>\(\widehat{AMN}=\widehat{ABC}\)
mà hai góc này là hai góc ở vị trí so le trong
nên MN//BC
Xét tứ giác MNBC có MN//BC
nên MNBC là hình thang
NC=NA+AC
MB=MA+AB
mà NA=MA và AC=AB
nên NC=MB
Hình thang MNBC có MB=NC
nên MNBC là hình thang cân
Cho tam giác ABC cân tại A. Trên tia đối của AC lấy điểm D, trên tia đối đó của AB lấy điểm E sao cho AD = AE, chứng minh tứ giác BDEC là hình thang cân
Cho tam giác đều ABC ,trên tia đối của tia AB lấy D , trên tia đối của tia AC lấy E sao cho AD = AE.Gọi M ; N ; P ; Q theo thứ tự là trung điểm của BE ; AD ; AC ; AB . Chứng minh:
a) Tứ giác BCDE là hình thang cân
b) Tứ giác CNEQ là hình thang.
Câu hỏi của Phan thanh hằng - Toán lớp 8 - Học toán với OnlineMath
Cho tam giác đều ABC trên tia đối của tia AB lấy điểm D trên tia đối của tia AC lấy điểm E sao cho AD=AE gọi M, N, P, Q theo thứ tự là trung điểm của các đoạn thẳng BE, AD, AB, AC chứng minh tứ giác BCDE là hình thang cân và tứ giác CNEQ là hìn thang
Đề bài bị sai
Đề đúng: Gọi M, N, P, Q theo thứ tự là trung điểm của các đoạn thẳng BE; AD; AC; AB.
Bài giải:
a) \(\Delta\)ABC đều
=> ^BAC = 60 độ
mà ^ EAD = ^BAC ( đối đỉnh)
=> ^EAD = 60 độ
Xét \(\Delta\) EAD có ^EAD = 60 độ và AE = AD
=> \(\Delta\)EAD đều
=> ^EDA = ^ABC (= 60 độ ) mà hai góc này ở vị trí so le trong
=> ED//BC (1)
Xét \(\Delta\) EAB và \(\Delta\)DAC có:
AE = AD ;
^ EAB = ^DAC ( đối đỉnh)
AB = AC
=> \(\Delta\)EAB = \(\Delta\)DAC
=> ^BEA = ^CDA
mà ^ AED = ^ ADE ( \(\Delta\)AED đều )
=> ^ BEA + ^AED = ^CDA + ^DAC
=> ^BED = ^CDA (2)
Từ (1) ; (2) => Tứ giác BEDC là hình thang cân.
b) ED // BC ( theo 1)
=> \(\frac{AE}{AC}=\frac{AD}{AB}=\frac{2AN}{2AQ}=\frac{AN}{AQ}\)
=> \(\frac{AE}{AC}=\frac{AN}{AQ}\)
=> EN//CQ
=> CNEQ là hình thang.
Cho tam giác đều ABC. Trên tia đối tia AB lấy điểm D và trên tia đối tia AC lấy điểm E sao cho AD = AE. Gọi M,N,P,Q lần lượt là trung điểm của các đoạn thẳng BE,AD,AC,AB
a) Chứng minh rằng tứ giác BCDE là hình thang cân
b) Chứng minh rằng tứ giác CNEQ là hình thang
c) Trên tia đối của tia MN lấy N' sao cho N'M = MN. Chứng minh rằng BN' vuông góc với BD ; EB = 2MN
d) Tam giác MNP là tam giác đều
Bạn kham khảo nha:
Cho tam giác đều ABC. Trên tia đối tia AB lấy điểm D và ... - Online MathBạn kham khảo link:
Cho tam giác đều ABC. Trên tia đối tia AB lấy điểm D và - Online Math
Cho tam giác đều ABC. Trên tia đối tia AB lấy điểm D và trên tia đối tia AC lấy điểm E sao cho AD = AE. Gọi M,N,P,Q lần lượt là trung điểm của các đoạn thẳng BE,AD,AC,AB
a) Chứng minh rằng tứ giác BCDE là hình thang cân
b) Chứng minh rằng tứ giác CNEQ là hình thang
c) Trên tia đối của tia MN lấy N' sao cho N'M = MN. Chứng minh rằng BN' vuông góc với BD ; EB = 2MN
d) Tam giác MNP là tam giác đều
Cho tam giác đều ABC. Trên tia đối tia AB lấy điểm D và trên tia đối tia AC lấy điểm E sao cho AD = AE. Gọi M,N,P,Q lần lượt là trung điểm của các đoạn thẳng BE,AD,AC,AB
a) Chứng minh rằng tứ giác BCDE là hình thang cân
b) Chứng minh rằng tứ giác CNEQ là hình thang
c) Tam giác MNP là tam giác đều
bn vào Link này xem thử nhé :
Cho tam giác đều ABC. Trên tia đối tia AB lấy điểm D và trên tia đối tia AC lấy điểm E sao cho AD = AE. Gọi M,N,P,Q lần lượt là trung điểm của các đoạn thẳng BE,AD,AC,ABa) Chứng minh rằng tứ giác BCDE là hình thang cânb) Chứng minh rằng tứ giác CNEQ là hình thangc) Tam giác MNP là tam giác đề - Tìm với Google
Hok tốt
# EllyNguyen #
cho tam giác ABC cân tại A, đường cao AM. Gọi I là trung điểm của AC. trên tia đối của tia IM lấy điểm K sao cho IM=IK a) chứng minh tứ giác AMCK là hình chữ nhật b)tứ giác ABMK là hình gì?Vì sao? c) trên tia đối của tia MA lấy điểm E sao cho ME=MA. chứng minh tứ giác ABEC là hình thoi. d) tìm điều kiển của tam giác ABC để tứ giác ABEC là hình vuông.
a: Xét tứ giác AMCK có
I là trung điểm của AC
I là trung điểm của MK
Do đó: AMCK là hình bình hành
mà \(\widehat{AMC}=90^0\)
nên AMCK là hình chữ nhật
Cho tam giác ABC cân tại A . vẽ phân giác ad[d thuộc bc]. kẻ dm vuông góc ab[ m thuộc ab],dn vuông góc ac[ n thuộc ac] a]chứng minh am=an b/ chứng minh mn//bc c/ trên tia đối của m lấy điểm e sao cho md=me, trên tia đối của tia nd lấy điểm f sao cho nd=nf. chứng minh tam giác aef cân
a: Xét ΔAMD vuông tại M và ΔAND vuông tại N có
AD chung
góc MAD=góc NAD
=>ΔMAD=ΔNAD
=>AM=AN
b: Xét ΔACB có AM/AB=AN/AC
nên MN//BC
c: Xét ΔADE có
AM vừa là đường cao, vừa là trung tuýen
=>ΔADE cân tại A
=>AD=AE
Xét ΔADF có
AN vừa là đường cao, vừa là trung tuyến
=>ΔADF cân tại A
=>AD=AF
=>AE=AF
=>ΔAEFcân tạiA
cho tam giác ABC cân tại A , trên tia đối của AC lấy điểm D , trên tia đối của AB lấy điểm E sao cho BC//DE cm tứ giác BDEC là hình thang cân
A,B 654
chúc học tốt
đáp án:
A,B 654
k cho mk nhé
chúc bn hok tốt