Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Phươngg Linkk
Xem chi tiết
Đinh Lê Phương Linh
Xem chi tiết
Đinh Lê Phương Linh
21 tháng 10 2016 lúc 21:04

Giúp mình với

Nguyễn Xuân Đại
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
31 tháng 8 2017 lúc 10:45

Trên tia đối của tia CB lấy điểm A' sao cho CA' = CA. Sử dụng tính chất của tam giác cân ta có được CM là đường trung trực của AA' Þ MA = MA'. Sử dụng bất đẳng thức trong tam giác A'MB ta có: CA + CB = CA' + CB = BA' <MA' + MB Þ CA + CB < MA + MB.

Hùng
Xem chi tiết
headsot96
23 tháng 7 2019 lúc 10:16

A B C M D H

Từ A vẽ AH vuông góc với CM cắt BC tại D.

\(\Delta MAH=\Delta MDH\left(cgc\right)\)(tự chứng minh)

\(=>MA=MD\)(2 cạnh tương ứng)

Theo bất đẳng thức tam giác : MD+MB>BD

nên MA+MB>BD (1)

Ta có : BD=BC+CD 

Mà CA=CD(tự chứng minh)nên BD=CA+CB(2)

Từ (1) và (2) => CA+CB<MA+MB

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
21 tháng 5 2019 lúc 5:22

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Trên tia đối tia CB lấy điểm E sao cho CE = CA. Nối MA, ME nên  ∆ ACE cân tại C có CM là đường phân giác nên CM là đường trung trực (tính chất tam giác cân)

⇒ MA = ME (tính chất đường trung trực)

Ta có: AC + BC = CE + BC = BE (1)

MA + MB = ME + MB (2)

Trong ∆ MBE, ta có: BE < MB+ ME (bất đẳng thức tam giác) (3)

Từ (1), (2) và (3) suy ra: AC + CB < AM + MB.

Một người bình thường vô...
Xem chi tiết
Lan Anh
27 tháng 6 2021 lúc 17:50

a) ΔABDΔABD cân tại A => BADˆ=BDAˆBAD^=BDA^ (t/c tam giác cân)

Lại có: BADˆ+DAEˆ=BACˆ=90oBAD^+DAE^=BAC^=90o

BDAˆ+ADEˆ=BDEˆ=90oBDA^+ADE^=BDE^=90o

Do đó, DAEˆ=ADEˆDAE^=ADE^

=> ΔADEΔADE cân tại E (dấu hiệu nhận biết tam giác cân)

=> AE = ED (t/c tam giác cân) (đpcm)

b) Có: AH // ED (cùng ⊥BC⊥BC)
=> HADˆ=ADEˆHAD^=ADE^ (so le trong)

= DAE (câu a)

=> AD là phân giác HACˆ(đpcm)

Lan Anh
27 tháng 6 2021 lúc 17:54

undefined

Lan Anh
27 tháng 6 2021 lúc 17:55

undefined

lộc Nguyễn
Xem chi tiết
๖²⁴ʱƘ-ƔℌŤ༉
15 tháng 8 2019 lúc 9:46

Kẻ \(AH\perp MC\)cắt BC ở K

Xét hai tam giác vuông AHC và KHC có:

         HC: cạnh chung

         \(\widehat{ACH}=\widehat{KCH}\)(gt)

Suy ra \(\Delta AHC=\Delta KHC\left(cgv-gnk\right)\)

\(\Rightarrow AH=KH\) và AC = KC (hai cạnh tương ứng)

Xét hai tam giác vuông AMH và KMH có:

         MH: cạnh chung

        \(AH=KH\)(cmt)

Suy ra \(\Delta AMH=\Delta KMH\left(2cgv\right)\)

\(\Rightarrow AM=KM\)(hai cạnh tương ứng)

Áo dụng BĐT tam giác vào tam giác BMK, ta được: \(BM+MK>BK\)

\(\Rightarrow BM+AM>BC+CK\)

\(\Rightarrow BM+AM>BC+AC\left(đpcm\right)\)

gunny
Xem chi tiết