Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Phạm Quang Minh
Xem chi tiết
Lê Quang Hưng
22 tháng 9 2021 lúc 19:44

Cho tam giác ABC có góc B bằng 70 độ, điểm M thuộc cạnh AC. Vẽ điểm D đối xứng với M qua AB, vẽ điểm E đối xứng với M qua BC. Chứng minh rằng tam giác BDE cân và tính góc DBE

Toán lớp 8
Khách vãng lai đã xóa
Nguyễn Gia Huân
22 tháng 9 2021 lúc 19:57

a) M đối xứng với D qua AB nên MB=BD và AB vuông góc với MD. Ta thấy Am vừa là đường trung tuyến vừa là đường trung trực nên tam giác AMD cân ở A nên AM=AD

Tương tự ta chứng minh được tam giác AEM cân ở A nên AM=AE

=>AE=AD=AM

b)Gọi I là điểm giao của AB và MD, K là giao của AC và ME

tam giác AMD cân có AB là đường trung trực nên cũng là đường phân giác của góc MAD nên góc DAB=gócBAM

tam giác MAE cũng vậy nên góc MAC=gócEAC

vậy góc DAE=góc DAB+ góc BAM + góc MAC +góc CAE

= 2 (góc BAM+ goc MAC)

=2.70

=140 độ

Khách vãng lai đã xóa
rororonoazoro
Xem chi tiết
Nguyễn Khánh Chi
Xem chi tiết
Hermione Granger
1 tháng 10 2021 lúc 13:05

a. Ta có \(M,D\) đối xứng qua \(AB\)

\(\rightarrow AD=AM\)

Lại có \(M,E\)  đối xứng qua  \(AC\rightarrow AM=AE\)

\(\rightarrow AD=AE\rightarrow\Delta ADE\) CÂN

b. Ta có \(M,D\) đối xứng qua \(AB,I\in AB\)

\(\rightarrow\widehat{IMA}=\widehat{IDA}=\widehat{ADE}\)

Tương tự \(\widehat{KMA}=\widehat{KEA}=\widehat{DEA}\)

Mà \(\Delta ADE\) cân tại \(A\)

\(\rightarrow\widehat{ADE}=\widehat{AED}\)

\(\rightarrow\widehat{IMA}=\widehat{KMA}\)

 \(\rightarrow MA\) là phân giác \(\widehat{IMK}\)c. Ta có \(M,D\) đối xứng qua \(AB\)\(\rightarrow\widehat{DAB}=\widehat{BAM}\rightarrow\widehat{DAM}=2\widehat{BAM}\)Tương tự \(\widehat{MAE}=2\widehat{MAC}\)\(\rightarrow\widehat{DAE}=\widehat{DAM}+\widehat{MAE}\)\(\rightarrow\widehat{DAE}=2\widehat{BAM}+2\widehat{MAC}=2\widehat{BAC}=140^o\)\(\rightarrow\widehat{ADE}=\widehat{AED}=90^o-\frac{1}{2}\widehat{DAE}=20^o\) 
Khách vãng lai đã xóa
Huyền Trân
Xem chi tiết
Jennie Kim
21 tháng 9 2019 lúc 20:18

tự kẻ hình :

AB là đường trung trực của MD (gt)

=> AM = AD (đl)      (1)

AC là đường trung trực của EM (gt)

=> AE = AM (đl)      (2)

(1)(2) => AE = AD 

Kudo Shinichi
21 tháng 9 2019 lúc 20:29

A B C M D E 1 2 3 4

a. Vì D đối xứng với M qua trục AB

\(\Rightarrow\) AB là đường trung trực MD.

\(\Rightarrow\) AD = AM (tính chất đường trung trực) (1)

\(\Rightarrow\) Vì E đối xứng với M qua trục AC

\(\Rightarrow\) AC là đường trung trực của ME

\(\Rightarrow\) AM = AE ( tính chất đường trung trực) (2)

\(\Rightarrow\) Từ (1) và (2) suy ra : AD = AE

b ) AD = AM suy ra \(\Delta AMD\) cân tại A có \(AB\perp MD\)

nên AB cũng là đường phân giác của góc MAD

\(\Rightarrow\widehat{A_1}=\widehat{A}_2\)

AM = AE suy ra \(\Delta AME\) cân tại A có \(AC\perp ME\) nên AC cũng là đường phân giác của \(\widehat{MAE}\)

\(\Rightarrow\widehat{A}_3=\widehat{A}_4\)

\(\widehat{DAE}=\widehat{A}_1+\widehat{A}_2+\widehat{A}_3+\widehat{A}_4\)

                \(=2\left(\widehat{A}_2+\widehat{A}_3\right)=2\widehat{BAC}=2.70^o=140^o\)

Chúc bạn học tốt !!!

chuột michkey
Xem chi tiết
Cíu iem
Xem chi tiết
Nguyễn Lê Phước Thịnh
13 tháng 11 2021 lúc 23:51

a: Ta có: D đối xứng với M qua AB

nên AD=AM(1)

Ta có: E đối xứng với M qua AC

nên AM=AE(2)

Từ (1) và (2) suy ra AD=AE

truong bao phuong nhi
Xem chi tiết
Taylor Swift
21 tháng 8 2016 lúc 11:03

Dài quá ! Mình ngại lắm !

Quỳnh Trang Phan
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
6 tháng 5 2019 lúc 8:12

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

AD = AM suy ra ∆ AMD cân tại A có AB ⊥ MD nên AB cũng là đường phân giác của ∠ (MAD)

⇒ ∠ A 1 =  ∠ A 2

AM = AE suy ra  ∆ AME cân tại A có AC ⊥ ME nên AC cũng là đường phân giác của  ∠ (MAE)

⇒  ∠ A 3  =  ∠ A 4

∠ (DAE) =  ∠ A 1  +  ∠ A 2  +  ∠ A 3  +  ∠ A 4  = 2(  ∠ A 2 +  ∠ A 3  ) = 2 ∠ (BAC) = 2. 70 0  =  140 0