Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
nameless
Xem chi tiết
Xyz OLM
1 tháng 9 2019 lúc 21:18

\(\text{Áp dụng tính chất dãy tỉ số bằng nhau ta có :}\)

\(\Rightarrow\frac{40x-20y}{5}=\frac{10z-40x}{7}=\frac{20y-10z}{9}=\frac{40x-20y+10z-40x+20y-10z}{5+7+9}=0\)

\(\Rightarrow40x=20y\left(1\right);\)

\(20y=10z\left(2\right)\)

Từ (1) và (2) 

\(\Rightarrow40x=20y=10z\)

\(\Rightarrow\hept{\begin{cases}40x=20y\\20y=10z\end{cases}\Rightarrow\hept{\begin{cases}\frac{x}{20}=\frac{y}{40}\\\frac{y}{10}=\frac{z}{20}\end{cases}\Rightarrow}\hept{\begin{cases}\frac{x}{20}=\frac{y}{40}\\\frac{y}{40}=\frac{z}{80}\end{cases}}\Rightarrow\frac{x}{20}=\frac{y}{40}=\frac{z}{80}\Rightarrow\frac{2x}{40}=\frac{3y}{120}=\frac{4z}{320}}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có : 

\(\frac{x}{20}=\frac{y}{40}=\frac{z}{80}=\frac{2x}{40}=\frac{3y}{120}=\frac{4z}{320}=\frac{2x+3y+4z}{40+120+320}=\frac{48}{480}=\frac{1}{10}\)

\(\Rightarrow10x=20\Rightarrow x=2;\)

\(10y=40\Rightarrow y=4;\)

\(10z=80\Rightarrow z=8\)

Vậy x = 2 ; y = 4 ; z = 8

nameless
Xem chi tiết
✿✿❑ĐạT̐®ŋɢย❐✿✿
2 tháng 9 2019 lúc 16:01

Từ giả thiết \(\Rightarrow\frac{2.\left(40x-20y\right)}{5}=\frac{2.\left(10z-40x\right)}{7}=\frac{2.\left(2y-10z\right)}{9}\)

\(\Leftrightarrow\frac{80x-40y}{5}=\frac{20z-80x}{7}=\frac{40y-20z}{9}\)

đan vy
Xem chi tiết
Nguyễn  Việt Dũng
23 tháng 10 2023 lúc 17:07

Em có thể chụp đề nha

Phan Tiến Dũng
Xem chi tiết
nguyen quynh trang
Xem chi tiết
Phan Thanh Tịnh
13 tháng 10 2016 lúc 17:18

\(\frac{x}{7}=\frac{7y}{7}=\frac{5z}{9}=\frac{2x}{14}=\frac{y}{1}=\frac{10z}{18}=\frac{2x+y-10z}{14+1-18}=\frac{6}{-3}=-2\Rightarrow\hept{\begin{cases}x=-2.7=-14\\y=-2\\z=-2:\frac{5}{9}=\frac{-18}{5}\end{cases}}\)

Võ Thị Thúy An
Xem chi tiết
Sắc màu
12 tháng 9 2018 lúc 9:50

\(\frac{z}{x}=-\frac{3}{5}\)

=> \(\frac{z}{-3}=\frac{x}{5}\)\(\frac{70z}{-210}=\frac{40x}{200}\)

Áp dụng tính chất dãy tỉ số bằng nhau :
=> \(\frac{z}{-3}=\frac{x}{5}\)\(\frac{70z}{-210}=\frac{40x}{200}=\frac{70z-40x}{-201+200}\)\(\frac{1000}{-10}=-100\)

=> \(\hept{\begin{cases}z=-3.-100=300\\x=5.-100=-500\end{cases}}\)

Vậy x = - 500; và z = 300

Lê Tài Bảo Châu
Xem chi tiết
Trần Phúc Khang
31 tháng 7 2019 lúc 21:54

Ta có:\(10=2xyz\)

=> \(P=\frac{1}{2x+2xz+1}+\frac{2xy}{y+2xy+10}+\frac{10z}{10z+yz+10}\) 

        \(=\frac{1}{2x+2xz+1}+\frac{2xy}{y+2xy+2xyz}+\frac{2xyz^2}{2xyz^2+yz+2xyz}\)

          \(=\frac{1}{2x+2xz+1}+\frac{2x}{1+2x+2xz}+\frac{2xz}{2xz+1+2x}\)

          \(=1\)

Vậy P=1

   

Ahihi
Xem chi tiết
Xyz OLM
25 tháng 10 2020 lúc 15:36

Đặt \(\frac{x}{3}=\frac{y}{5}=\frac{z}{7}=k\Rightarrow\hept{\begin{cases}x=3k\\y=5k\\z=7k\end{cases}}\)

Khi đó A = \(=\frac{2x+5y+10z}{3x-4y+9z}=\frac{2.3k+5.5k+10.7k}{3.3k-4.5k+9.7k}=\frac{6k+25k+70k}{9k-20k+63k}=\frac{101k}{52k}=\frac{101}{52}\)

Khách vãng lai đã xóa
Cao Vương
Xem chi tiết
Vo Thanh Anh
28 tháng 5 2017 lúc 9:01

P=y/(2xy+2xyz+y)+2xy/(y+2xy+10)+(2xyz.z)/(2xyz.z+yz+2xyz)=

=y/(2xy+10+y)+2xy/(y+2xy+10)+2xz/(2xz+1+2x)

=y/(2xy+10+y)+2xy/(y+2xy+10)+2xyz/(2xyz+y+2xy)=y/(2xy+10+y)+2xy/(y+2xy+10)+10/(10+y+2xy)=1.

Vay P=1