Cmr: nếu a³ + b³ + c³=3abc thì a+b+c=0 hoặc a=b=c
CMR : nếu a +b +c = 0 hoặc a = b = c thì a^3 + b^3 + c^3 = 3abc
CMR: Với a+b+c=0 hoặc a=b=c thì a3+b3+c3=3abc.
Ta có: \(a=b=c\Rightarrow\hept{\begin{cases}a^3=abc\\a^3=b^3=c^3\end{cases}}\)
Vì \(a^3=b^3=c^3\Rightarrow a^3+b^3+c^3=3a^3\)
\(\Rightarrow a^3+b^3+c^3=3abc\left(đpcm\right)\)
\(a+b+c=0\)
\(\Leftrightarrow a+b=-c\)
\(\Leftrightarrow a^3+3a^2b+3ab^2+b^3=-c^3\)
\(\Leftrightarrow a^3+3ab\left(a+b\right)+b^3+c^3=0\)
\(\Leftrightarrow a^3-3abc+b^3+c^3=0\)
\(\Leftrightarrow a^3+b^3+c^3=3abc\)
Chứng minh rằng nếu a3 +b3+c3 =3abc thì a+b+c =0 hoặc a = b= c
\(\Leftrightarrow\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc=0\)
\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a+b+c=0\\a=b=c\end{matrix}\right.\)
\(a^3+b^3+c^3=3abc\\ \Leftrightarrow a^3+b^3+c^3-3abc=0\\ \Leftrightarrow\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3abc=0\\ \Leftrightarrow\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2\right)-3ab\left(a+b+c\right)=0\\ \Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}a+b+c=0\\a^2+b^2+c^2-ab-bc-ca=0\left(1\right)\end{matrix}\right.\\ \left(1\right)\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ac=0\\ \Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\\ \Leftrightarrow\left\{{}\begin{matrix}a=b\\b=c\\c=a\end{matrix}\right.\Leftrightarrow a=b=c\)
Vậy \(a^3+b^3+c^3=3abc\Leftrightarrow\left[{}\begin{matrix}a+b+c=0\\a=b=c\end{matrix}\right.\)
CMR nếu a b c=0 thì a^3 b^3 c^3=3abc
Giả thiết: \(a + b + c = 0\)
Cần chứng minh: \(a^{3} + b^{3} + c^{3} = 3 a b c\)
Bước 1: Công thức tổng lập phương kinh điển:
\(a^{3} + b^{3} + c^{3} - 3 a b c = \left(\right. a + b + c \left.\right) \left(\right. a^{2} + b^{2} + c^{2} - a b - b c - c a \left.\right)\)
Bước 2: Thay \(a + b + c = 0\) vào:
\(a^{3} + b^{3} + c^{3} - 3 a b c = 0 \cdot \left(\right. a^{2} + b^{2} + c^{2} - a b - b c - c a \left.\right) = 0\)
Bước 3: Suy ra:
\(a^{3} + b^{3} + c^{3} = 3 a b c\).
Ok bro, ngắn gọn nè:
Giả sử: \(a + b + c = 0\)
Ta dùng hằng đẳng thức:
\(a^{3} + b^{3} + c^{3} - 3 a b c = \left(\right. a + b + c \left.\right) \left(\right. a^{2} + b^{2} + c^{2} - a b - b c - c a \left.\right)\)
Vì \(a + b + c = 0\) ⇒ vế phải = 0
⇒ \(a^{3} + b^{3} + c^{3} = 3 a b c\)
Q.E.D. ✅
ta có: \(a^3b^3c^3=\left(abc\right)^3\)
mà \(abc=0\)
\(\Rightarrow\left(abc\right)^3=0\)
\(\Rightarrow a^3b^3c^3=0\)
và \(3abc=0\)
\(\Rightarrow a^3b^3c^3=3abc\)
CMR nếu a+b+c=0 thì a2+b2+c2-3abc=0
Nếu a3+b3+c3=3abc
CMR: a+b+c=0 hoặc a=b=c
mong giải đúng và tôi đang cần gấp
\(a^3+b^3+c^3=3abc\)
<=> \(a^3+b^3+c^3-3abc=0\)
<=> \(\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)
<=> \(\orbr{\begin{cases}a+b+c=0\\a^2+b^2+c^2-ab-bc-ca=0\end{cases}}\)
Xét: \(a^2+b^2+c^2-ab-bc-ca=0\)
<=> \(2a^{ 2}+2b^2+2c^2-2ab-2bc-2ca=0\)
<=> \(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
<=> \(\hept{\begin{cases}a-b=0\\b-c=0\\c-a=0\end{cases}}\) <=> \(\hept{\begin{cases}a=b\\b=c\\c=a\end{cases}}\)<=> \(a=b=c\)
=> đpcm
Chứng minh rằng nếu a3+b3+c3=3abc thì a=b=c hoặc a+b+c=0 ****
Câu 2: Chứng minh rằng,nếu a³+b³+c³=3abc thì: a+b+c=0 hoặc a=b=c
a³ + b³ + c³ = 3abc
<=> a³ + b³ + c³ - 3abc = 0
<=> a³ + b³ + 3a²b + 3ab² - 3a²b - 3ab² + c³ - 3abc = 0
<=> (a+b)³ - 3a²b - 3ab² + c³ - 3abc = 0
<=> [(a+b)³ + c³] – 3ab(a + b + c) = 0
<=> (a+b+c)[(a+b)² - c(a+b) + c²] – 3ab(a+b+c) = 0
<=> (a+b+c)(a² + 2ab + b² - ac – bc + c² - 3ab) = 0
<=> (a+b+c)(a² + b² + c² - bc – ab – ca) = 0
<=>{a + b +c = 0, a;b;c là các số dương => a = b = c
hoặc {a² + b² + c² - bc – ab – ca = 0
<=> 2a² + 2b² + 2c² - 2bc – 2ab – 2ca = 0
<=> (a² - 2ab + b²) + (b² - 2bc + c²) + (c² - 2ac + a²) = 0
<=> (a - b)² + (b - c)² + (c - a)² = 0
mà (a - b)² ≥ 0 với mọi a;b
(b - c)² ≥ 0 với mọi b;c
(c - a)² ≥ 0 với mọi a;c
nên ta có a - b = b - c = c - a
=> a = b =c
Với a,b,c>0.CMR:
(a+b)(b+c)(c+a) lớn hơn hoặc bằng 3abc