Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
l҉o҉n҉g҉ d҉z҉
Xem chi tiết
Nguyễn Hưng Phát
23 tháng 7 2020 lúc 17:53

Cộng 2 phương trình lại 
VT có:\(\sqrt{x}+\sqrt{32-x}\le8;\sqrt[4]{x}+\sqrt[4]{32-x}\le4\) nên VT\(\le\)12
VP có:\(y^2-6y+21=\left(y-3\right)^2+12\ge12\)
Nghiệm \(x=16;y=3\)

Khách vãng lai đã xóa
Tran Le Khanh Linh
23 tháng 7 2020 lúc 21:13

điều kiện: 0=<x =< 32

hệ đã cho tương đương với: \(\hept{\begin{cases}\left(\sqrt{x}+\sqrt{32-x}\right)+\left(\sqrt[4]{x}+\sqrt[4]{32-x}\right)=y^2-6y+21\\\sqrt{x}+\sqrt[4]{32-x}=y^2-3\end{cases}}\)

theo bất đẳng thức Bunhiacopsky ta có:

\(\left(\sqrt{x}+\sqrt{32-x}\right)^2\le\left(1^2+1^2\right)\left(x+32-x\right)=64\)

\(\Rightarrow\sqrt{x}+\sqrt{32-x}\le8\)

\(\left(\sqrt[4]{x}+\sqrt[4]{32-x}\right)^4\le\left[2\left(\sqrt{x}+\sqrt{32-x}\right)\right]^2\le256\Rightarrow\sqrt[4]{x}+\sqrt[4]{32-x}\le4\)

\(\Rightarrow\left(\sqrt{x}+\sqrt{32-x}\right)+\left(\sqrt[4]{x}+\sqrt[4]{32-x}\right)\le12\)

mặt khác \(y^2-6y+21=\left(y-3\right)^2+12\ge12\)

đẳng thức xảy ra khi x=16 và y=3 (tm)

Khách vãng lai đã xóa
david
Xem chi tiết
Không Bít
Xem chi tiết
Nguyễn Thị Mát
29 tháng 11 2019 lúc 17:44

a ) \(HPT\Leftrightarrow\hept{\begin{cases}5x-y=4\left(1\right)\\3x-y=5\left(2\right)\end{cases}}\)

Lấy (1) trừ (2) :

\(\Rightarrow2x=-1\Rightarrow x=-\frac{1}{2}\)

Thay \(x=-\frac{1}{2}\) vào (1) : \(y=5x-4=5.-\frac{1}{2}-4=-\frac{13}{2}\)

Vậy HPT có nghiệm \(\left(x,y\right)=\left(-\frac{1}{2},-\frac{13}{2}\right)\)

Khách vãng lai đã xóa
Nguyễn Thị Mát
29 tháng 11 2019 lúc 17:50

b ) \(\hept{\begin{cases}\sqrt{3}x-\sqrt{2}y=1\\\sqrt{2}x+\sqrt{3}y=\sqrt{3}\end{cases}\Leftrightarrow\hept{\begin{cases}\sqrt{6}x-2y=\sqrt{2}\left(1\right)\\\sqrt{6}x+3y=3\left(2\right)\end{cases}}}\)

Lấy (2 ) -(1) thu được :

\(5y=3-\sqrt{2}\Rightarrow y=\frac{3-\sqrt{2}}{5}\)

Thay giá trị y trên vào (1) : \(x=\frac{2y+\sqrt{2}}{\sqrt{6}}=\frac{\sqrt{6}+\sqrt{3}}{5}\)

Vậy ......

Khách vãng lai đã xóa
Âu Dương Thiên Vy
Xem chi tiết
Thắng Nguyễn
7 tháng 2 2018 lúc 17:54

\(pt\left(1\right)\Leftrightarrow\left(x-y+2\right)\left(x^2+xy+y^2-2x-4y-8\right)=0\)

Phạm Văn Việt
Xem chi tiết
Nguyễn Duy Long
12 tháng 7 2017 lúc 7:31

\(pt< =>\hept{\begin{cases}x+y+2\sqrt{xy}=4\\x+y+6+2\sqrt{\left(x+3\right)\left(y+3\right)}=16\end{cases}}\)

<=>\(\hept{\begin{cases}x+y=4-2\sqrt{xy}\\x+y=10-2\sqrt{\left(x+3\right)\left(y+3\right)}\end{cases}}\)

=> \(4-2\sqrt{xy}=10-2\sqrt{\left(x+3\right)\left(y+3\right)}\)

<=>\(-2\sqrt{xy}=6-2\sqrt{\left(x+3\right)\left(y+3\right)}\)

<=> \(\sqrt{\left(x+3\right)\left(y+3\right)}=\sqrt{xy}+3\)

Bình phương hai vế, tự làm nốt

LIVERPOOL
13 tháng 7 2017 lúc 10:12

Lấy tổng, tích ta được:

\(\hept{\begin{cases}\sqrt{x+3}-\sqrt{x}+\sqrt{y+3}-\sqrt{y}=2\\\sqrt{x+3}+\sqrt{y}+\sqrt{y+3}+\sqrt{y}=6\end{cases}}\)Đặt \(\hept{\begin{cases}\sqrt{x+3}+\sqrt{x}=a\left(a>0\right)\\\sqrt{y+3}+\sqrt{y}=b\left(b>0\right)\end{cases}}\)và chú ý rằng \(\hept{\begin{cases}\sqrt{x+3}-\sqrt{x}=\frac{3}{a}\\\sqrt{y+3}-\sqrt{y}=\frac{3}{b}\end{cases}}\)

=>\(\hept{\begin{cases}a+b=6\\\frac{3}{a}+\frac{3}{b}=2\ge\frac{3.4}{a+b}=2\end{cases}}\)(theo Cauchy scharws)

Dấu bằng khi a=b=3

<=>x=y=1

Nguyễn Thị Ngọc Quỳnh
Xem chi tiết
Nhạt
Xem chi tiết
nguyễn hà quyên
Xem chi tiết
Team Free Fire 💔 Tớ Đan...
25 tháng 3 2020 lúc 9:35

cho mk hỏi ai chs lazi điểm danh cái đê ~ mk hỏi thật đấy k đùa nha ~ bình luận thì mk k cho 3 cái ~

Khách vãng lai đã xóa
Vũ Tiền Châu
Xem chi tiết
khánhchitt3003
12 tháng 10 2017 lúc 22:14

pt(1)<=>\(\left(\sqrt{x-1}+\sqrt{y}\right)^2=4\)