Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Duong Tue Tam
Xem chi tiết
Dang Tung
16 tháng 6 2023 lúc 8:47

\(\left(a\right):2x-7\sqrt{x}+3=0\left(x\ge0\right)\\ < =>\left(2x-6\sqrt{x}\right)-\left(\sqrt{x}-3\right)=0\\ < =>2\sqrt{x}\left(\sqrt{x}-3\right)-\left(\sqrt{x}-3\right)=0\\ < =>\left(2\sqrt{x}-1\right)\left(\sqrt{x}-3\right)=0\\ =>\left[{}\begin{matrix}2\sqrt{x}-1=0\\\sqrt{x}-3=0\end{matrix}\right.\\ < =>\left[{}\begin{matrix}x=\dfrac{1}{4}\left(TM\right)\\x=9\left(TM\right)\end{matrix}\right.\)

\(\left(b\right):3\sqrt{x}+5< 6\\ < =>3\sqrt{x}< 1\\ < =>\sqrt{x}< \dfrac{1}{3}\\ < =>0\le x< \dfrac{1}{9}\)

\(\left(c\right):x-3\sqrt{x}-10< 0\\ < =>\left(x-5\sqrt{x}\right)+\left(2\sqrt{x}-10\right)< 0\\ < =>\sqrt{x}\left(\sqrt{x}-5\right)+2\left(\sqrt{x}-5\right)< 0\\ < =>\left(\sqrt{x}-5\right)\left(\sqrt{x}+2\right)< 0\\ =>\left\{{}\begin{matrix}\sqrt{x}-5< 0\\\sqrt{x}+2>0\end{matrix}\right.\\ < =>\left\{{}\begin{matrix}0\le x< 25\\x\ge0\end{matrix}\right.< =>0\le x< 25\)

\(\left(d\right):x-5\sqrt{x}+6=0\left(x\ge0\right)\\ < =>\left(x-2\sqrt{x}\right)-\left(3\sqrt{x}-6\right)=0\\ < =>\sqrt{x}\left(\sqrt{x}-2\right)-3\left(\sqrt{x}-2\right)=0\\ < =>\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)=0\\ =>\left[{}\begin{matrix}\sqrt{x}-3=0\\\sqrt{x}-2=0\end{matrix}\right.\\ < =>\left[{}\begin{matrix}x=9\\x=4\end{matrix}\right.\left(TM\right)\)

\(\left(e\right):x+5\sqrt{x}-14< 0\\ < =>\left(x+7\sqrt{x}\right)-\left(2\sqrt{x}+14\right)< 0\\ < =>\sqrt{x}\left(\sqrt{x}+7\right)-2\left(\sqrt{x}+7\right)< 0\\ < =>\left(\sqrt{x}-2\right)\left(\sqrt{x}+7\right)< 0\\ =>\left\{{}\begin{matrix}\sqrt{x}+7>0\\\sqrt{x}-2< 0\end{matrix}\right.\\ < =>\left[{}\begin{matrix}x\ge0\\0\le x< 4\end{matrix}\right.< =>0\le x< 4\)

haru
Xem chi tiết
Kirigaya Kazuto
9 tháng 9 2018 lúc 15:03

\(x+2\sqrt{2x^2+2x^3}=0\) ( ĐK : \(x\ge0\))

\(\Leftrightarrow x+2\sqrt{x^2\left(2+2x\right)}=0\)

\(\Leftrightarrow x\cdot2x\sqrt{2+2x}=0\) ( Vì \(x\ge0\))

\(\Leftrightarrow x\left(1+2\sqrt{2+2x}\right)=0\)

\(\Leftrightarrow x=0\)

( VÌ \(x\ge0\)\(\Rightarrow2x\ge0\Rightarrow1+2\sqrt{2+2x}>0\))

Vậy \(S=\left\{0\right\}\)

Bùi Đức Anh
Xem chi tiết
Nguyễn Lê Thành Vinh Thi...
12 tháng 10 2017 lúc 20:52

\(x+2\sqrt{2x^2}+2x^3=0\\ x+2.\sqrt{2}.x+2x^3=0\\ x+1.x+2x^3=0\\ 2x+2x^3=0\\ 2x\left(1+x^2\right)=0\)

ta thấy \(x^2+1>0\)nên để \(2x\left(1+x^2\right)=0\)thì 2x=0 vậy x=0

๖Fly༉Donutღღ
12 tháng 10 2017 lúc 20:58

\(x+2\sqrt{2x^2}+2x^3=0\)

\(\Rightarrow\)\(x\left(1+\sqrt{2x}+2x^2\right)=0\)

\(x=0\)( 1 ) hoặc \(\left(1+\sqrt{2x}+2x^2\right)=0\)( 2 )

\(2\Leftrightarrow\left(1+\sqrt{2x}\right)^2=0\)

\(\Rightarrow\)\(x=\frac{-1}{\sqrt{2}}\Rightarrow x=\frac{-\sqrt{2}}{2}\)

Vậy \(x=0;x=\frac{-\sqrt{2}}{2}\)

Bùi Đức Anh
Xem chi tiết
Cô Hoàng Huyền
12 tháng 10 2017 lúc 22:29

Với \(x\ge0\) , phương trình tương đương : \(x+2\sqrt{2}x+2x^3=0\)

\(\Leftrightarrow x\left(1+2\sqrt{2}+2x^2\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\left(n\right)\\2x^2=-1-2\sqrt{2}\left(l\right)\end{cases}}\)

Với x < 0, phương trình tương đương   \(x-2\sqrt{2}x+2x^3=0\)

\(\Leftrightarrow x\left(1-2\sqrt{2}+2x^2\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\left(l\right)\\2x^2=2\sqrt{2}-1\end{cases}}\)

Với \(2x^2=2\sqrt{2}-1\Rightarrow x^2=\frac{2\sqrt{2}-1}{2}\Rightarrow\orbr{\begin{cases}x=\sqrt{\frac{2\sqrt{2}-1}{2}}\left(l\right)\\x=-\sqrt{\frac{2\sqrt{2}-1}{2}}\left(n\right)\end{cases}}\)

Vậy phương trình có hai nghiệm là x = 0 hoặc \(x=-\sqrt{\frac{2\sqrt{2}-1}{2}}\)

Nakamori Aoko
Xem chi tiết
đăng việt cường
31 tháng 10 2018 lúc 19:48

đk: \(x\ge-1\)

-xét x bằng 0 (tm)

-xét x khác 0=>phương trình có nghiệm khi x<0,khi đó ta có:

\(x+2.\sqrt{2.x^2.\left(x+1\right)}=0\) mà x < 0 nên khi rút gọn cho x ta có:

\(1-2.\sqrt{2\left(x+1\right)}=0\) => giải ra ta có  x=\(\frac{-7}{8}\) (tm).     vậy phương trình có 2 nghiệm là 0 và\(\frac{-7}{8}\)

        

Nguyễn Hồng Hạnh
Xem chi tiết
nguyễn minh anh
5 tháng 10 2018 lúc 12:46

1) \(x-2\sqrt{x}=0\Rightarrow\sqrt{x}\left(\sqrt{x}-2\right)=0\)\(\Rightarrow\orbr{\begin{cases}\sqrt{x}=0\\\sqrt{x}-2=0\end{cases}\Rightarrow}\orbr{\begin{cases}x=0\\x=4\end{cases}}\)

2) \(x=\sqrt{x}\Rightarrow x-\sqrt{x}=0\Rightarrow\sqrt{x}\left(\sqrt{x}-1\right)=0\)\(\Rightarrow\orbr{\begin{cases}\sqrt{x}=0\\\sqrt{x}-1=0\end{cases}\Rightarrow}\orbr{\begin{cases}x=0\\x=1\end{cases}}\)

3) \(2x+5\sqrt{x}=0\Rightarrow\sqrt{x}\left(2\sqrt{x}+5\right)=0\Rightarrow\sqrt{x}=0\)(Vì \(\sqrt{x}\ge0\Rightarrow2\sqrt{x}+5>0\))\(\Rightarrow x=0\)

Yoriichi Tsugikuni
Xem chi tiết
『Kuroba ム Tsuki Ryoo...
16 tháng 10 2023 lúc 21:36

`#3107.101107`

`1/2x + 4/5 = 2x - 8/5`

`=> 1/2x - 2x = -4/5 - 8/5`

`=> -3/2x = -12/5`

`=> x = -12/5 \div (-3/2)`

`=> x = 8/5`

Vậy, `x = 8/5`

_____

`\sqrt{x} = 5`

`=> x = 5^2`

`=> x = 25`

Vậy, `x = 25`

___

`x^2 = 3`

`=> x^2 =  (+-\sqrt{3})^2`

`=> x = +- \sqrt{3}`

Vậy, `x \in {-\sqrt{3}; \sqrt{3}}.`

Zing zing
Xem chi tiết
Kiều Vũ Linh
19 tháng 6 2023 lúc 9:30

√(x² + x + 1) = 1

⇔ x² + x + 1 = 1

⇔ x² + x = 0

⇔ x(x + 1) = 0

⇔ x = 0 hoặc x + 1 = 0

*) x + 1 = 0

⇔ x = -1

Vậy x = 0; x = -1

--------------------

√(x² + 1) = -3

Do x² ≥ 0 với mọi x

⇒ x² + 1 > 0 với mọi x

⇒ x² + 1 = -3 là vô lý

Vậy không tìm được x thỏa mãn yêu cầu

--------------------

√(x² - 10x + 25) = 7 - 2x

⇔ √(x - 5)² = 7 - 2x

⇔ |x - 5| = 7 - 2x  (1)

*) Với x ≥ 5, ta có 

(1) ⇔ x - 5 = 7 - 2x

⇔ x + 2x = 7 + 5

⇔ 3x = 12

⇔ x = 4 (loại)

*) Với x < 5, ta có:

(1) ⇔ 5 - x = 7 - 2x

⇔ -x + 2x = 7 - 5

⇔ x = 2 (nhận)

Vậy x = 2

--------------------

√(2x + 5) = 5

⇔ 2x + 5 = 25

⇔ 2x = 20

⇔ x = 20 : 2

⇔ x = 10

Vậy x = 10

-------------------

√(x² - 4x + 4) - 2x +5 = 0

⇔ √(x - 2)² - 2x + 5 = 0

⇔ |x - 2| - 2x + 5 = 0 (2)

*) Với x ≥ 2, ta có: 

(2) ⇔  x - 2 - 2x + 5 = 0

⇔ -x + 3 = 0

⇔ x = 3 (nhận)

*) Với x < 2, ta có:

(2) ⇔ 2 - x - 2x + 5 = 0

⇔ -3x + 7 = 0

⇔ 3x = 7

⇔ x = 7/3 (loại)

Vậy x = 3

Gia Huy
18 tháng 6 2023 lúc 22:58

1)

\(\Leftrightarrow x^2+x+1=1^2=1\\ \Leftrightarrow x^2+x=0\\ \Leftrightarrow x\left(x+1\right)=0\\ \Rightarrow\left\{{}\begin{matrix}x=0\\x=-1\end{matrix}\right.\)

2) Do \(x^2+1>0\forall x\) nên \(x\in\varnothing\)

3) 

\(\Leftrightarrow\sqrt{\left(x-5\right)^2}=7-2x\\ \Leftrightarrow\left|x-5\right|=7-2x\)

Nếu \(x\ge5\) thì

\(\Leftrightarrow x-5-7+2x=0\\ \Leftrightarrow3x-12=0\\ \Leftrightarrow3x=12\\ \Rightarrow x=4\)

=> Loại trường hợp này

Nếu \(x< 5\) thì

\(\Leftrightarrow5-x-7+2x=0\\ \Leftrightarrow x-2=0\\ \Rightarrow x=2\)

=> Nhận trường hợp này

Vậy x = 2 

4)

\(\Leftrightarrow2x+5=5^2=25\\ \Leftrightarrow2x=25-5=20\\ \Rightarrow x=\dfrac{20}{2}=10\)

5)

\(\Leftrightarrow\sqrt{\left(x-2\right)^2}-2x+5=0\\ \Leftrightarrow\left|x-2\right|-2x+5=0\)

Nếu \(x\ge2\) thì

\(\Leftrightarrow x-2-2x+5=0\\ \Leftrightarrow3-x=0\\ \Rightarrow x=3\)

=> Nhận trường hợp này

Nếu \(x< 2\) thì

\(\Leftrightarrow2-x-2x+5=0\\ \Leftrightarrow7-3x=0\\ \Leftrightarrow3x=7\\ \Rightarrow x=\dfrac{7}{3}\)

=> Loại trường hợp này

Vậy x = 3

Trần Thị Thu Hường
Xem chi tiết
Đinh Trọng Chiến
3 tháng 11 2016 lúc 15:24

\(x+2\sqrt{2}x^2+2x^3=2x\left(x+\frac{\sqrt{2}}{2}\right)^2\))

Yurii
Xem chi tiết
Dương Lam Hàng
14 tháng 7 2018 lúc 22:04

a) \(2\sqrt{x}-10=20\left(ĐKXD:x\ge0\right)\)

\(\Leftrightarrow2\sqrt{x}=30\Leftrightarrow\sqrt{x}=15\)

\(\Leftrightarrow x=225\)

b) \(2x-\sqrt{x}=0\left(ĐKXĐ:x\ge0\right)\)

\(\Leftrightarrow2x=\sqrt{x}\Leftrightarrow4x^2=x\Leftrightarrow4x^2-x=0\Leftrightarrow x\left(4x-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\4x-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=\frac{1}{4}\end{cases}}}\)

Vậy ....

c) \(x+3\sqrt{x}=0\left(ĐKXĐ:x\ge0\right)\)

\(\Leftrightarrow\sqrt{x}\left(\sqrt{x}+3\right)=0\Leftrightarrow\orbr{\begin{cases}\sqrt{x}=0\\\sqrt{x}+3=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x\in\varnothing\end{cases}}}\)

Vậy x = 0

d) \(\left(x-1\right)\left(x^2+1\right)=0\Leftrightarrow\orbr{\begin{cases}x-1=0\\x^2+1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1\\x^2=-1\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=1\\x\in\varnothing\end{cases}}}\)

Vậy x = 1

linh ngoc
14 tháng 7 2018 lúc 22:31

a.\(2\sqrt{x}=20+10\)

\(2\sqrt{x}=30\)

\(\sqrt{x}=30:2\)

\(\sqrt{x}=15\)

\(x=15^2\)

x=225