Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Phạm Gia Huệ
Xem chi tiết
Giáp T Minh Huyền
7 tháng 5 2020 lúc 20:11

Có (x+1)/(x-2)+x/(x+2)=(6-x)/(x^2-4)+1

<=>(x+1)(x+2)/(x-2)(x+2)+x(x-2)/(x-2)(x+2)=(6-x)/(x-2)(x+2)+(x-2)(x+2)/(x-2)(x+2)

=>(x+1)(x+2)+x(x-2)=(6-x)+(x-2)(x+2)

<=>x^2+3x+2+x^2-2x=6-x+x^2-4

<=>2x^2+x+2=x^2-x+2

<=>x^2+2x=0

<=>x(x+2)=0

suy ra :x=0 hoặc x=-2

Vậy...

Khách vãng lai đã xóa
ninh phạm
Xem chi tiết
Mai Nguyễn Duy Mạnh
7 tháng 11 2018 lúc 19:45

Lời giải

Đặt √x+2018=a(a≥0)⇒2018=a2−xx+2018=a(a≥0)⇒2018=a2−x

PT đã cho trở thành:

x2+a=a2−xx2+a=a2−x

⇔(x2−a2)+(a+x)=0⇔(x2−a2)+(a+x)=0

⇔(x+a)(x−a+1)=0⇔(x+a)(x−a+1)=0

⇒[x+a=0x−a+1=0⇒[x+a=0x−a+1=0

Nếu x+a=0⇒a=−x⇔√x+2018=−xx+a=0⇒a=−x⇔x+2018=−x

⇒{x≤0x+2018=x2⇒{x≤0x+2018=x2

⇒{x≤0x=1±3√8972⇒{x≤0x=1±38972 (giải pt bậc 2 cơ bản)

⇒x=1−3√8972⇒x=1−38972

Nếu x−a+1=0⇒a=x+1⇒√x+2018=x+1x−a+1=0⇒a=x+1⇒x+2018=x+1

⇒{x+2018=(x+1)2x≥−1⇒{x2+x−2017=0x≥−1⇒{x+2018=(x+1)2x≥−1⇒{x2+x−2017=0x≥−1

⇒x=√8069−12

Đặt √x+2018=a(a≥0)⇒2018=a2−xx+2018=a(a≥0)⇒2018=a2−x

PT đã cho trở thành:

x2+a=a2−xx2+a=a2−x

⇔(x2−a2)+(a+x)=0⇔(x2−a2)+(a+x)=0

⇔(x+a)(x−a+1)=0⇔(x+a)(x−a+1)=0

⇒[x+a=0x−a+1=0⇒[x+a=0x−a+1=0

Nếu x+a=0⇒a=−x⇔√x+2018=−xx+a=0⇒a=−x⇔x+2018=−x

⇒{x≤0x+2018=x2⇒{x≤0x+2018=x2

⇒{x≤0x=1±3√8972⇒{x≤0x=1±38972 (giải pt bậc 2 cơ bản)

⇒x=1−3√8972⇒x=1−38972

Nếu x−a+1=0⇒a=x+1⇒√x+2018=x+1x−a+1=0⇒a=x+1⇒x+2018=x+1

⇒{x+2018=(x+1)2x≥−1⇒{x2+x−2017=0x≥−1⇒{x+2018=(x+1)2x≥−1⇒{x2+x−2017=0x≥−1

⇒x=√8069−12

Mai Nguyễn Duy Mạnh
7 tháng 11 2018 lúc 19:46

Nhầm tí 1 dòng thôi

Lê Hoàng Tiến Đạt
Xem chi tiết
Inequalities
14 tháng 2 2020 lúc 13:15

\(ĐKXĐ:x\ne\pm1\)

\(pt\Leftrightarrow\frac{\left(x+1\right)\left(x^2+x+1\right)-3x^2\left(x^2+x+1\right)}{\left(x-1\right)\left(x+1\right)\left(x^2+x+1\right)}\)\(=\frac{2x\left(x+1\right)\left(x-1\right)}{\left(x-1\right)\left(x+1\right)\left(x^2+x+1\right)}\)

\(\Leftrightarrow\left(x+1\right)\left(x^2+x+1\right)-3x^2\left(x^2+x+1\right)\)\(=2x\left(x+1\right)\left(x-1\right)\)

\(\Leftrightarrow\left(x+1-3x^2\right)\left(x^2+x+1\right)\)\(=2x\left(x^2-1\right)\)

\(\Leftrightarrow-3x^4-2x^3-x^2+2x+1\)\(=2x^3-2x\)

\(\Leftrightarrow-3x^4-4x^3-x^2+4x+1=0\)

Khách vãng lai đã xóa
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
29 tháng 5 2018 lúc 2:47

Mẫu thức chung ( x + 1 ) x + 2 x - 2 . Từ đó ta được x = -7

Huyền Nguyễn
Xem chi tiết
Songoku
23 tháng 2 2021 lúc 17:53

Mình khuyên bạn thế này : 

Bạn nên tách những câu hỏi ra 

Như vậy các bạn sẽ dễ giúp

Và cũng có nhiều bạn giúp hơn !

Khách vãng lai đã xóa
l҉o҉n҉g҉ d҉z҉
23 tháng 2 2021 lúc 19:49

Bài 1.

a) ( x - 3 )( x + 7 ) = 0

<=> x - 3 = 0 hoặc x + 7 = 0

<=> x = 3 hoặc x = -7

Vậy S = { 3 ; -7 }

b) ( x - 2 )2 + ( x - 2 )( x - 3 ) = 0

<=> ( x - 2 )( x - 2 + x - 3 ) = 0

<=> ( x - 2 )( 2x - 5 ) = 0

<=> x - 2 = 0 hoặc 2x - 5 = 0

<=> x = 2 hoặc x = 5/2

Vậy S = { 2 ; 5/2 }

c) x2 - 5x + 6 = 0

<=> x2 - 2x - 3x + 6 = 0

<=> x( x - 2 ) - 3( x - 2 ) = 0

<=> ( x - 2 )( x - 3 ) = 0

<=> x - 2 = 0 hoặc x - 3 = 0

<=> x = 2 hoặc x = 3

Khách vãng lai đã xóa
l҉o҉n҉g҉ d҉z҉
23 tháng 2 2021 lúc 19:52

Bài 2.

a) \(\frac{x}{x+1}-1=\frac{3}{2}x\)

ĐKXĐ : x khác -1

<=> \(\frac{x}{x+1}-\frac{x+1}{x+1}=\frac{3}{2}x\)

<=> \(\frac{-1}{x+1}=\frac{3x}{2}\)

=> 3x( x + 1 ) = -2

<=> 3x2 + 3x + 2 = 0

Vi 3x2 + 3x + 2 = 3( x2 + x + 1/4 ) + 5/4 = 3( x + 1/2 )2 + 5/4 ≥ 5/4 > 0 ∀ x

=> phương trình vô nghiệm

b) \(\frac{4x}{x-2}-\frac{7}{x}=4\)

ĐKXĐ : x khác 0 ; x khác 2

<=> \(\frac{4x^2}{x\left(x-2\right)}-\frac{7x-14}{x\left(x-2\right)}=\frac{4x^2-8x}{x\left(x-2\right)}\)

=> 4x2 - 7x + 14 = 4x2 - 8x

<=> 4x2 - 7x - 4x2 + 8x = -14

<=> x = -14 ( tm )

Vậy phương trình có nghiệm x = -14

Khách vãng lai đã xóa
Dung Thái
Xem chi tiết
Cô Hoàng Huyền
28 tháng 2 2018 lúc 9:28

a) \(\frac{1}{x^2-2x+2}+\frac{2}{x^2-2x+3}=\frac{6}{x^2-2x+4}\)

Đặt \(x^2-2x+3=t\left(t\ge2\right)\), khi đó phương trình trở thành:

\(\frac{1}{t-1}+\frac{2}{t}=\frac{6}{t+1}\)

\(\Leftrightarrow\frac{t\left(t+1\right)+t^2-1}{\left(t-1\right)t\left(t+1\right)}=\frac{6t\left(t-1\right)}{\left(t-1\right)t\left(t+1\right)}\)

\(\Leftrightarrow t\left(t+1\right)+t^2-1=6t\left(t-1\right)\)

\(\Leftrightarrow2t^2+t-1=6t^2-6t\)

\(\Leftrightarrow-4t^2+7t-1=0\)

\(\Leftrightarrow\orbr{\begin{cases}t=\frac{7+\sqrt{33}}{8}\\t=\frac{7-\sqrt{33}}{8}\end{cases}}\left(ktmđk\right)\)

Vậy phương trình vô nghiệm.

hello sunshine
Xem chi tiết
minh quang
6 tháng 4 2020 lúc 16:38

8,

b, (-x2+12x+4)/(x2+3x-4) = 12/(x+4) + 12/(3x-3)

(=) (-x2+12x+4)/(x-1)(x+4) -12(x-1)/(x-1)(x+4) - 4(x+4)/(x-1)(x+4) = 0

(=) -x2 +12x +4 -12x +12 -4x -16 = 0

(=) -x2 -4x = 0

(=) -x(x+4) = 0

(=) -x = 0 hoặc x +4 = 0

(=) x=0 hoặc x=-4

Vậy S={0;4}

Chúc bạn học tốt.

Khách vãng lai đã xóa
Han Sara
Xem chi tiết
Trương Huy Hoàng
24 tháng 4 2020 lúc 17:39

\(\frac{1}{x^2+5x+6}+\frac{1}{x^2+7x+12}+\frac{1}{x^2+9x+20}+\frac{1}{x^2+11x+30}=\frac{1}{8}\) (ĐKXĐ: x \(\ne\) -2; x \(\ne\) -3; x \(\ne\) -4; x \(\ne\) -5; x \(\ne\) -6)

\(\Leftrightarrow\) \(\frac{1}{x^2+2x+3x+6}+\frac{1}{x^2+3x+4x+12}+\frac{1}{x^2+4x+5x+20}+\frac{1}{x^2+5x+6x+30}=\frac{1}{8}\)

\(\Leftrightarrow\) \(\frac{1}{x\left(x+2\right)+3\left(x+2\right)}+\frac{1}{x\left(x+3\right)+4\left(x+3\right)}+\frac{1}{x\left(x+4\right)+5\left(x+4\right)}+\frac{1}{x\left(x+5\right)+6\left(x+5\right)}=\frac{1}{8}\)

\(\Leftrightarrow\) \(\frac{1}{\left(x+2\right)\left(x+3\right)}+\frac{1}{\left(x+3\right)\left(x+4\right)}+\frac{1}{\left(x+4\right)\left(x+5\right)}+\frac{1}{\left(x+5\right)\left(x+6\right)}=\frac{1}{8}\)

\(\Leftrightarrow\) \(\frac{1}{x+2}-\frac{1}{x+3}+\frac{1}{x+3}-\frac{1}{x+4}+\frac{1}{x+4}-\frac{1}{x+5}+\frac{1}{x+5}-\frac{1}{x+6}=\frac{1}{8}\)

\(\Leftrightarrow\) \(\frac{1}{x+2}-\frac{1}{x+6}=\frac{1}{8}\)

\(\Leftrightarrow\) \(\frac{x+6-x-2}{\left(x+2\right)\left(x+6\right)}=\frac{1}{8}\)

\(\Leftrightarrow\) \(\frac{4}{\left(x+2\right)\left(x+6\right)}=\frac{1}{8}\)

\(\Leftrightarrow\) \(\frac{4}{\left(x+2\right)\left(x+6\right)}=\frac{4}{32}\)

\(\Rightarrow\) (x + 2)(x + 6) = 32

\(\Leftrightarrow\) (x + 2)(x + 6) - 32 = 0

\(\Leftrightarrow\) x2 + 6x + 2x + 12 - 32 = 0

\(\Leftrightarrow\) x2 + 8x - 20 = 0

\(\Leftrightarrow\) x2 + 8x + 16 - 36 = 0

\(\Leftrightarrow\) (x + 4)2 - 36 = 0

\(\Leftrightarrow\) (x + 4 - 6)(x + 4 + 6) = 0

\(\Leftrightarrow\) (x - 2)(x + 10) = 0

\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x+10=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\left(TMĐK\right)\\x=-10\left(TMĐK\right)\end{matrix}\right.\)

Vậy S = {2; -10}

Chúc bn học tốt!!

Han Sara
24 tháng 4 2020 lúc 17:40

thank you very very..... much!

OMG!

Nhã ca Mai phạm
Xem chi tiết
Nguyên Vương
18 tháng 4 2017 lúc 22:20

\(1.\frac{7x-3}{x-1}=\frac{2}{3}\)   ( \(x\ne1\))

\(\Leftrightarrow\frac{3\left(7x-1\right)}{3\left(x-1\right)}=\frac{2\left(x-1\right)}{3\left(x-1\right)}\)

\(\Rightarrow3\left(7x-3\right)=2\left(x-1\right)\)

\(\Leftrightarrow21x-9=2x-2\)

\(\Leftrightarrow19x=7\)

\(\Leftrightarrow x=\frac{7}{19}\)

\(2.\frac{5x-1}{3x+2}=\frac{5x-7}{3x-1}\)

\(\Leftrightarrow\frac{\left(5x-1\right)\left(3x-1\right)}{\left(3x+2\right)\left(3x-1\right)}=\frac{\left(5x-7\right)\left(3x+2\right)}{\left(3x-1\right)\left(3x+2\right)}\)

\(\Rightarrow\left(5x-1\right)\left(3x-1\right)=\left(5x-7\right)\left(3x+2\right)\)

\(\Leftrightarrow15x^2-5x-3x+1=15x^2+10x-21x-14\)

\(\Leftrightarrow15x^2-8x+1=15x^2-11x-14\)

\(\Leftrightarrow\left(15x^2-15x^2\right)+\left(-8x+11x\right)=-14-1\)

\(\Leftrightarrow3x=-15\)

\(\Leftrightarrow x=-5\)

\(3.\frac{1-x}{x+1}+3=\frac{2x+3}{3x-1}\)

\(\Leftrightarrow\frac{\left(1-x\right)\left(3x-1\right)}{\left(x+1\right)\left(3x-1\right)}+\frac{3\left(x+1\right)\left(3x-1\right)}{\left(x+1\right)\left(3x-1\right)}=\frac{\left(2x+3\right)\left(x+1\right)}{\left(3x-1\right)\left(0+1\right)}\)

\(\Rightarrow\left(1-x\right)\left(3x-1\right)+3\left(x+1\right)\left(3x-1\right)=\left(2x+3\right)\left(x+1\right)\)

\(\Leftrightarrow3x-1-3x^2+x+3\left(3x^2-x+3x-1\right)=2x^2+2x+3x+3\)

\(\Leftrightarrow3x-1-3x^2+x+9x^2-3x+9x-3=2x^2+2x+3x+3\)

\(\Leftrightarrow6x^2+10x-4=2x^2+5x+3\)

\(\Leftrightarrow\left(6x^2-2x^2\right)+\left(10x-5x\right)=7\)

\(\Leftrightarrow4x^2+5x-7=0\)

\(\Leftrightarrow\left(2x\right)^2+4x.\frac{5}{4}+\frac{16}{25}+\frac{191}{25}=0\)

\(\Leftrightarrow\left(2x+\frac{5}{4}\right)^2-\frac{191}{25}=0\)

\(\left(2x+\frac{5}{4}\right)^2>0\)

\(\Rightarrow\left(2x+\frac{5}{4}\right)^2+\frac{191}{25}>0\)

=> PT vô nghiệm 

\(4.\frac{1-6x}{x-2}+\frac{9x+4}{x+2}=\frac{x\left(3x-2\right)+1}{x^2-4}\)

\(\Leftrightarrow\frac{\left(1-6x\right)\left(x+2\right)}{x^2-4}+\frac{\left(9x+4\right)\left(x-2\right)}{x^2-4}=\frac{2\left(3x-2\right)+1}{x^2-4}\)

\(\Rightarrow\left(1-6x\right)\left(x+2\right)+\left(9x+4\right)\left(x-2\right)=3\left(3x-2\right)+1\)

\(\Leftrightarrow x+2-6x^2-12x+9x^2-18x+4x-8=3x^2-2x+1\)

\(\Leftrightarrow3x^2-25x-6=3x^2-2x+1\)

\(\Leftrightarrow\left(3x^2-3x^2\right)+\left(-25x+2x\right)+\left(-6-1\right)=0\)

\(\Leftrightarrow-23x-7=0\)

\(\Leftrightarrow-23x=7\)

\(\Leftrightarrow x=\frac{-7}{23}\)

\(5.\frac{3x+2}{3x-2}-\frac{6}{2+3x}=\frac{9x^2}{9x^2-4}\)

\(\Leftrightarrow\frac{\left(3x+2\right)^2}{9x^2-4}-\frac{6\left(3x-2\right)}{9x^2-4}=\frac{9x^2}{9x^2-4}\)

\(\Rightarrow\left(3x+2\right)^2-6\left(3x-2\right)=9x^2\)

\(\Leftrightarrow9x^2+12x+4-18x+12=9x^2\)

\(\Leftrightarrow\left(9x^2-9x^2\right)+\left(12x-18x\right)+\left(4+12\right)=0\)

\(\Leftrightarrow-6x+16=0\)

\(\Leftrightarrow-6x=-16\)

\(\Leftrightarrow x=\frac{16}{6}\)

\(6.1+\frac{1}{x+2}=\frac{12}{8-x^3}\)

\(\Leftrightarrow\frac{\left(x+2\right)\left(8-x^3\right)}{\left(x+2\right)\left(8-x^3\right)}+\frac{1\left(8-x^3\right)}{\left(x+2\right)\left(8-x^3\right)}=\frac{12\left(x+2\right)}{\left(x+2\right)\left(8-x^3\right)}\)

\(\Rightarrow\left(x+2\right)\left(8-x^3\right)+1\left(8-x^3\right)=12\left(x+2\right)\)

\(\Leftrightarrow8x+x^4+16+2x^3+8-x^3=12x+24\)

\(\Leftrightarrow x^4+\left(2x^3-x^3\right)+\left(8x-12x\right)+\left(16-24\right)=0\)

\(\Leftrightarrow x^4+x^3-4x-8=0\)

\(\Leftrightarrow\left(x^4-4x\right)+\left(x^3-8\right)=0\)

Đến đấy mk tắc r xl bạn nhé