Lời giải
Đặt √x+2018=a(a≥0)⇒2018=a2−xx+2018=a(a≥0)⇒2018=a2−x
PT đã cho trở thành:
x2+a=a2−xx2+a=a2−x
⇔(x2−a2)+(a+x)=0⇔(x2−a2)+(a+x)=0
⇔(x+a)(x−a+1)=0⇔(x+a)(x−a+1)=0
⇒[x+a=0x−a+1=0⇒[x+a=0x−a+1=0
Nếu x+a=0⇒a=−x⇔√x+2018=−xx+a=0⇒a=−x⇔x+2018=−x
⇒{x≤0x+2018=x2⇒{x≤0x+2018=x2
⇒{x≤0x=1±3√8972⇒{x≤0x=1±38972 (giải pt bậc 2 cơ bản)
⇒x=1−3√8972⇒x=1−38972
Nếu x−a+1=0⇒a=x+1⇒√x+2018=x+1x−a+1=0⇒a=x+1⇒x+2018=x+1
⇒{x+2018=(x+1)2x≥−1⇒{x2+x−2017=0x≥−1⇒{x+2018=(x+1)2x≥−1⇒{x2+x−2017=0x≥−1
⇒x=√8069−12
Đặt √x+2018=a(a≥0)⇒2018=a2−xx+2018=a(a≥0)⇒2018=a2−x
PT đã cho trở thành:
x2+a=a2−xx2+a=a2−x
⇔(x2−a2)+(a+x)=0⇔(x2−a2)+(a+x)=0
⇔(x+a)(x−a+1)=0⇔(x+a)(x−a+1)=0
⇒[x+a=0x−a+1=0⇒[x+a=0x−a+1=0
Nếu x+a=0⇒a=−x⇔√x+2018=−xx+a=0⇒a=−x⇔x+2018=−x
⇒{x≤0x+2018=x2⇒{x≤0x+2018=x2
⇒{x≤0x=1±3√8972⇒{x≤0x=1±38972 (giải pt bậc 2 cơ bản)
⇒x=1−3√8972⇒x=1−38972
Nếu x−a+1=0⇒a=x+1⇒√x+2018=x+1x−a+1=0⇒a=x+1⇒x+2018=x+1
⇒{x+2018=(x+1)2x≥−1⇒{x2+x−2017=0x≥−1⇒{x+2018=(x+1)2x≥−1⇒{x2+x−2017=0x≥−1
⇒x=√8069−12