A= 1/6 + 1/18 + 1/36 + 1/60 + 1/90.
Tính A
A=1/6 + 1/18 + 1/36 + 1/60 + 1/90 + 1/126
\(3A=\frac{3}{2.3}+\frac{3}{6.3}+\frac{1}{12.3}+\frac{3}{20.3}+\frac{3}{30.3}+\frac{3}{42.3}\)
\(3A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}\)
\(3A=\frac{2-1}{1.2}+\frac{3-2}{2.3}+\frac{4-3}{3.4}+...+\frac{7-6}{6.7}\)
\(3A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{6}-\frac{1}{7}\)
\(3A=1-\frac{1}{7}=\frac{6}{7}\Rightarrow A=\frac{2}{7}\)
1. tính nhanh tổng sau :
1/6+ 1/18+ 1/36+ 1/60+ 1/90+ 1/126
ko phải tui ra đề đâu đề thi của trường chuyên vĩnh yên cấp 2 do sở ra đề
\(A=\frac{1}{6}+\frac{1}{18}+\frac{1}{36}+\frac{1}{60}+\frac{1}{90}+\frac{1}{126}\)
\(A=\frac{1}{3}\times\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}\right)\)
\(A=\frac{1}{3}\times\left(\frac{1}{1\times2}+\frac{1}{2\times3}+\frac{1}{3\times4}+\frac{1}{4\times5}+\frac{1}{5\times6}+\frac{1}{6\times7}\right)\)
\(A=\frac{1}{3}\times\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{6}-\frac{1}{7}\right)\)
\(A=\frac{1}{3}\times\left(1-\frac{1}{7}\right)\)
\(A=\frac{1}{3}\times\frac{6}{7}=\frac{2}{7}\)
\(A=\frac{1}{18}+\frac{1}{36}+\frac{1}{60}+\frac{1}{90}+\frac{1}{126}+\frac{1}{168}\)
\(A=\frac{1}{18}+\frac{1}{36}+\frac{1}{60}+...+\frac{1}{168}\)
\(\frac{1}{3}A=\frac{1}{54}+\frac{1}{108}+...+\frac{1}{504}\)
\(\frac{1}{3}A=\frac{1}{6.9}+\frac{1}{9.12}+...+\frac{1}{21.24}\)
\(=\frac{1}{6}-\frac{1}{9}+\frac{1}{9}-\frac{1}{12}+...+\frac{1}{21}-\frac{1}{24}\)
\(=\frac{1}{6}-\frac{1}{24}\)
\(=\frac{4-1}{24}=\frac{3}{24}=\frac{1}{8}\)
=> \(A=\frac{1}{8}:\frac{1}{3}\)\(=\frac{3}{8}\)
Tính nhanh:
a,1/4+2/5+6/8+9/15+8/1
b,1/2+2/4+3/6+4/8+5/10+6/12+7/14+8/16+9/18+10/20
c,1/10+4/20+9/30+16/40+25/50+36/60+49/70+64/80+81/90
a; \(\dfrac{1}{4}\) + \(\dfrac{2}{5}\) + \(\dfrac{6}{8}\) + \(\dfrac{9}{15}\) + \(\dfrac{8}{1}\)
= (\(\dfrac{1}{4}\) + \(\dfrac{6}{8}\)) + (\(\dfrac{2}{5}\) + \(\dfrac{9}{15}\)) + \(\dfrac{8}{1}\)
= (\(\dfrac{1}{4}\) + \(\dfrac{3}{4}\)) + (\(\dfrac{2}{5}\) + \(\dfrac{3}{5}\)) + 8
= 1 + 1 + 8
= 2 + 8
= 10
b; \(\dfrac{1}{2}\) + \(\dfrac{2}{4}\) + \(\dfrac{3}{6}\) + \(\dfrac{4}{8}\) + \(\dfrac{5}{10}\) + \(\dfrac{6}{12}\) + \(\dfrac{7}{14}\) + \(\dfrac{8}{16}\) + \(\dfrac{10}{20}\)
= \(\dfrac{1}{2}\) + \(\dfrac{1}{2}\) x (\(\dfrac{2}{2}\) + \(\dfrac{3}{3}\) + \(\dfrac{4}{4}\) + \(\dfrac{5}{5}\)+ \(\dfrac{6}{6}+\dfrac{7}{7}+\dfrac{8}{8}\) + \(\dfrac{10}{10}\))
= \(\dfrac{1}{2}\) + \(\dfrac{1}{2}\) x (1 + 1 +1 + 1+ 1+ 1+ 1 +1)
= \(\dfrac{1}{2}\) + \(\dfrac{1}{2}\) x 1 x 8
= \(\dfrac{1}{2}\) + \(\)\(\dfrac{1}{2}\) x 8
= \(\dfrac{1}{2}\) + 4
= \(\dfrac{9}{2}\)
c; \(\dfrac{1}{10}\) + \(\dfrac{4}{20}\) + \(\dfrac{9}{30}\)+\(\dfrac{16}{40}+\dfrac{25}{50}+\dfrac{36}{60}+\dfrac{49}{70}+\dfrac{64}{80}+\dfrac{81}{90}\)
= \(\dfrac{1}{10}+\dfrac{2}{10}+\dfrac{3}{10}+\dfrac{4}{10}+\dfrac{5}{10}+\dfrac{6}{10}+\dfrac{7}{10}+\dfrac{8}{10}+\dfrac{9}{10}\)
= \(\dfrac{1+2+3+4+5+6+7+8+9}{10}\)
= \(\dfrac{\left(1+9\right)+\left(2+8\right)+\left(3+7\right)+\left(4+6\right)+5}{10}\)
= \(\dfrac{10+10+10+10+5}{10}\)
= \(\dfrac{\left(10+10+10+10\right)+5}{10}\)
= \(\dfrac{10\times4+5}{10}\)
= \(\dfrac{45}{10}\)
= \(\dfrac{9}{2}\)
Tính nhanh:
a,1/4+2/5+6/8+9/15+8/1
b,1/2+2/4+3/6+4/8+5/10+6/12+7/14+8/16+9/18+10/20
c,1/10+4/20+9/30+16/40+25/50+36/60+49/70+64/80+81/90
a; \(\dfrac{1}{4}\) + \(\dfrac{2}{5}\) + \(\dfrac{6}{8}\) + \(\dfrac{9}{15}\) + \(\dfrac{8}{1}\)
= (\(\dfrac{1}{4}\) + \(\dfrac{6}{8}\)) + (\(\dfrac{2}{5}\) + \(\dfrac{9}{15}\)) + 8
= (\(\dfrac{1}{4}\) + \(\dfrac{3}{4}\)) + (\(\dfrac{2}{5}\) + \(\dfrac{3}{5}\)) + 8
= 1 + 1 + 8
= 2 + 8
= 10
b; \(\dfrac{1}{2}\) + \(\dfrac{2}{4}\) + \(\dfrac{3}{6}\) + \(\dfrac{4}{8}\) + \(\dfrac{5}{10}\) + \(\dfrac{6}{12}\) + \(\dfrac{7}{14}\) + \(\dfrac{8}{16}\) + \(\dfrac{9}{18}\) + \(\dfrac{10}{20}\)
= \(\dfrac{1}{2}\) + \(\dfrac{1}{2}\) + \(\dfrac{1}{2}\) + \(\dfrac{1}{2}\) + \(\dfrac{1}{2}\) + \(\dfrac{1}{2}\) + \(\dfrac{1}{2}\) + \(\dfrac{1}{2}\) + \(\dfrac{1}{2}\) + \(\dfrac{1}{2}\)
= \(\dfrac{1}{2}\) x 10
= 5
c; \(\dfrac{1}{10}\) + \(\dfrac{4}{20}\) + \(\dfrac{9}{30}\)+\(\dfrac{16}{40}+\dfrac{25}{50}+\dfrac{36}{60}+\dfrac{49}{70}+\dfrac{64}{80}+\dfrac{81}{90}\)
= \(\dfrac{1}{10}+\dfrac{2}{10}+\dfrac{3}{10}+\dfrac{4}{10}+\dfrac{5}{10}+\dfrac{6}{10}+\dfrac{7}{10}+\dfrac{8}{10}+\dfrac{9}{10}\)
= \(\dfrac{1+2+3+4+5+6+7+8+9}{10}\)
= \(\dfrac{\left(1+9\right)+\left(2+8\right)+\left(3+7\right)+\left(4+6\right)+5}{10}\)
= \(\dfrac{10+10+10+10+5}{10}\)
= \(\dfrac{\left(10+10+10+10\right)+5}{10}\)
= \(\dfrac{10\times4+5}{10}\)
= \(\dfrac{45}{10}\)
= \(\dfrac{9}{2}\)
tính; 1/6+ 1/18 +1/60+ 1/90 +1/126
Hình như bạn viết thiếu \(\frac{1}{36}\), nếu đúng là vậy thì mình giải như sau.
Đặt A =\(\frac{1}{6}+\frac{1}{18}+\frac{1}{36}+\frac{1}{60}+\frac{1}{90}+\frac{1}{126}\)
3A = \(\frac{3}{3.2}+\frac{3}{3.6}+\frac{3}{3.12}+\frac{3}{3.20}+\frac{3}{3.30}+\frac{3}{3.42}\)
3A = \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}\)
3A = \(\frac{2-1}{1.2}+\frac{3-2}{2.3}+\frac{4-3}{3.4}+...+\frac{7-6}{6.7}\)
3A = \(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{6}-\frac{1}{7}\)
3A = \(1-\frac{1}{7}=\frac{6}{7}\)
A = \(\frac{6}{7}:3=\frac{2}{7}\)
Gọi tổng là A:
ta có :
3A= 1/2+1/6+1/20+1/30+1/42
3A= 1/1.2+1/2.3+1/4.5+1/6.7
3A= 1-1/2+1/2-1/3+1/4-1/5+1/6-1/7
3A=1-1/3+1/4-1/5+1/6-1/7
3A= (1-1/7)+(1/3-1/4)+(1/5-1/7)
3A=6/7+-1/12+-2/35
3A=6/7-2/35+-1/12
3A=4/5-1/12
3A=43/60
A=43/180
\(\frac{1}{6}\)+\(\frac{1}{18}\)+\(\frac{1}{36}\)+\(\frac{1}{60}\)+\(\frac{1}{90}\)\(\frac{1}{126}\)
=1/2.3+1/3.6+1/6.6+1/6.10+1/10.9+1/9.14
=1/2-1/3+1/3-1/6+1/6-1/6+1/6-1/10+1/10-1/9+1/9-1/14
=1/2-1/14
=6/14=3/7
\(\frac{1}{6}+\frac{1}{18}+\frac{1}{36}+\frac{1}{60}+\frac{1}{90}+\frac{1}{126}\)
\(=\frac{1}{2\cdot3}+\frac{1}{3\cdot6}+\frac{1}{6\cdot6}+\frac{1}{6\cdot10}+\frac{1}{10\cdot9}+\frac{1}{9\cdot14}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{6}+\frac{1}{6}-\frac{1}{6}+\frac{1}{6}-\frac{1}{10}+\frac{1}{10}-\frac{1}{9}+\frac{1}{9}-\frac{1}{14}\)
\(=\frac{1}{2}-\frac{1}{14}\)
\(=\frac{3}{7}\)
1/6+1/18+1/60+1/90+1/126
Bài 2: Viết tiếp 2 số hạng vào dãy số sau:
a) 10, 13, 18, 26, ...
b) 0, 1, 2, 4, 7, 12, ...
c) 0, 1, 4, 9, 18, ...
d) 5, 6, 8, 10, ...
e) 1, 6, 54, 648, ... ...
k) 1, 3, 3, 9, 27,
L) 1, 2, 3, 6, 12, 24....
m) 1, 4, 9, 16, 25, 36,
o) 2, 12, 30, 56, 90,
p) 1, 3, 9, 27, ....
g) 1, 5, 14, 33, 72, h) 2, 20, 56, 110, 182.....
q) 2, 6, 12, 20, 30, ...
t) 6, 24, 60, 120, 210...
a) 10; 13; 18; 26; 36; 52...
c) 0; 1; 4; 9; 16; 25...
m) 1; 4; 9; 16; 25; 36; 49; 64...
p) 1; 3; 9; 27; 81; 243...