Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
homaunamkhanh
Xem chi tiết
Đặng Ngọc Quỳnh
13 tháng 1 2021 lúc 21:11

Ta có: \(A=\frac{x^2+25x+144}{x}=x+\frac{144}{x}+25\)

Các số dương : x và \(\frac{144}{x}\) có tích k đổi nên tổng nhỏ nhất và chỉ khi  \(x=\frac{144}{x}\)=> x=12

Vậy Min A = 49 khi và chỉ khi x=12

Khách vãng lai đã xóa
Nobi Nobita
13 tháng 1 2021 lúc 21:31

\(A=\frac{\left(x+16\right)\left(x+9\right)}{x}=\frac{x^2+25x+144}{x}=x+25+\frac{144}{x}\)

Vì \(x>0\)\(\Rightarrow\) Áp dụng bđt Cô si ta có:

\(x+\frac{144}{x}\ge2\sqrt{x.\frac{144}{x}}=2.\sqrt{144}=2.12=24\)

Dấu " = " xảy ra \(\Leftrightarrow x=\frac{144}{x}\)\(\Leftrightarrow x^2=144\)\(\Leftrightarrow x=12\)( do \(x>0\))

\(\Rightarrow A\ge25+24=49\)

Vậy \(minA=49\)\(\Leftrightarrow x=12\)

Khách vãng lai đã xóa
l҉o҉n҉g҉ d҉z҉
13 tháng 1 2021 lúc 21:13

\(A=\frac{\left(x+16\right)\left(x+9\right)}{x}=\frac{x^2+25x+144}{x}=x+25+\frac{144}{x}\)

Với x > 0, áp dụng bđt Cauchy ta có :

\(A=x+25+\frac{144}{x}\ge2\sqrt{x\cdot\frac{144}{x}}+25=24+25=49\)

Đẳng thức xảy ra khi x = 12

Vậy MinA = 49, đạt được khi x = 12

Khách vãng lai đã xóa
Quỳnh Phương
Xem chi tiết
lê thị hương giang
12 tháng 3 2020 lúc 11:40

\(A=\frac{\left(x+16\right)\left(x+9\right)}{x}=\frac{x^2+25x+144}{x}\)

\(=x+25+\frac{144}{x}\)

Có x > 0, Áp dụng BĐT Cô-si với hai số x và 144/x

\(x+\frac{144}{x}\ge2.\sqrt{x.\frac{144}{x}}=24\)

\(\Leftrightarrow x+25+\frac{144}{x}\ge24+25=49\)

Dấu = xảy ra \(\Leftrightarrow x=\frac{144}{x}\Leftrightarrow x^2=144\Leftrightarrow x=12\)

Vậy \(Min_A=49\Leftrightarrow x=12\)

Nguyễn Minh Đức
Xem chi tiết
Nguyễn Minh Đức
Xem chi tiết
Lee Saa
27 tháng 9 2020 lúc 15:36

Mình cũng thắc mắc câu này ;-;

Khách vãng lai đã xóa
FL.Han_
27 tháng 9 2020 lúc 15:40

Ta có:

\(\left|x-\frac{3}{4}\right|+\left|x+\frac{9}{7}\right|=\left|\frac{3}{4}-x\right|+\left|x+\frac{9}{7}\right|\ge\left|\frac{3}{4}-x+x+\frac{9}{7}\right|=\frac{57}{28}\)

=> \(28\cdot\left(\left|x-\frac{3}{4}\right|+\left|x+\frac{9}{7}\right|\right)\ge57\left(\forall x\right)\)

Dấu "=" xảy ra khi: \(\left(\frac{3}{4}-x\right)\left(x+\frac{9}{7}\right)\ge0\Rightarrow-\frac{9}{7}\le x\le\frac{3}{4}\)

Vậy \(Min=28\Leftrightarrow-\frac{9}{7}\le x\le\frac{3}{4}\)

Khách vãng lai đã xóa
Nobi Nobita
27 tháng 9 2020 lúc 15:42

Đặt \(A=\left|x-\frac{3}{4}\right|+\left|x+\frac{9}{7}\right|\)

\(\Rightarrow A=\left|\frac{3}{4}-x\right|+\left|x+\frac{9}{7}\right|\ge\left|\frac{3}{4}-x+x+\frac{9}{7}\right|=\left|\frac{57}{28}\right|=\frac{57}{28}\)

Dấu " = " xảy ra \(\Leftrightarrow\left(\frac{3}{4}-x\right)\left(x+\frac{9}{7}\right)\ge0\)

TH1: \(\hept{\begin{cases}\frac{3}{4}-x\le0\\x+\frac{9}{7}\le0\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{3}{4}\le x\\x\le\frac{-9}{7}\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge\frac{3}{4}\\x\le\frac{-9}{7}\end{cases}}\)( vô lý )

TH2: \(\hept{\begin{cases}\frac{3}{4}-x\ge0\\x+\frac{9}{7}\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{3}{4}\ge x\\x\ge\frac{-9}{7}\end{cases}}\Leftrightarrow\hept{\begin{cases}x\le\frac{3}{4}\\x\ge\frac{-9}{7}\end{cases}}\Leftrightarrow\frac{-9}{7}\le x\le\frac{3}{4}\)

\(\Rightarrow28.\left(\left|x-\frac{3}{4}\right|+\left|x+\frac{9}{7}\right|\right)\ge28.\frac{57}{28}=57\)

Dấu " = " xảy ra \(\Leftrightarrow-\frac{9}{7}\le x\le\frac{3}{4}\)

Vậy GTNN của biểu thức đã cho là \(57\)\(\Leftrightarrow-\frac{9}{7}\le x\le\frac{3}{4}\)

Khách vãng lai đã xóa
lưu viết vĩ
Xem chi tiết
subjects
Xem chi tiết
Nguyễn Bá Minh Nhật
26 tháng 12 2022 lúc 14:50

đợi tý

when the imposter is sus
28 tháng 12 2022 lúc 21:07

a) Để \(A=\dfrac{2022}{\left|x\right|+2023}\) đạt Max thì |x| + 2023 phải đạt Min

Ta có \(\left|x\right|\ge0\forall x\Rightarrow\left|x\right|+2023\ge2023\forall x\)

\(\Rightarrow\dfrac{2022}{\left|x\right|+2023}\le\dfrac{2022}{2023}\forall x\)

Dấu "=" xảy ra khi \(\left|x\right|=0\Rightarrow x=0\)

Vậy Max \(A=\dfrac{2022}{\left|x\right|+2023}=\dfrac{2022}{2023}\) đạt được khi x = 0

b) Để \(B=\left(\sqrt{x}+1\right)^{99}+2022\) đạt Min với \(x\ge0\) thì \(\sqrt{x}+1\) phải đạt Min

Ta có \(\sqrt{x}\ge0\forall x\ge0\Rightarrow\sqrt{x}+1\ge1\forall x\ge0\)

\(\Rightarrow\left(\sqrt{x}+1\right)^{99}+2022\ge1+2022\ge2023\forall x\ge0\)

Dấu "=" xảy ra khi \(\sqrt{x}=0\Rightarrow x=0\)

Vậy Max \(B=\left(\sqrt{x}+1\right)^{99}+2022=2023\) đạt được khi x = 0

Câu c) và d) thì tự làm, ko có rảnh =))))

Dương đình minh
18 tháng 8 2023 lúc 16:46

Đã trả lời rồi còn độ tí đồ ngull

Lê Quốc Vương
Xem chi tiết
Nguyễn Nhật Minh
30 tháng 12 2015 lúc 12:14

Bài này thắng làm  rồi 

Dễ thương khi đào mương
Xem chi tiết
Thùy Dương
31 tháng 3 2017 lúc 6:55

2.

a/\(A=5-I2x-1I\)

Ta thấy: \(I2x-1I\ge0,\forall x\)

nên\(5-I2x-1I\le5\)

\(A=5\)

\(\Leftrightarrow5-I2x-1I=5\)

\(\Leftrightarrow I2x-1I=0\)

\(\Leftrightarrow2x=1\)

\(\Leftrightarrow x=\frac{1}{2}\)

Vậy GTLN của \(A=5\Leftrightarrow x=\frac{1}{2}\)

b/\(B=\frac{1}{Ix-2I+3}\)

Ta thấy : \(Ix-2I\ge0,\forall x\)

nên \(Ix-2I+3\ge3,\forall x\)

\(\Rightarrow B=\frac{1}{Ix-2I+3}\le\frac{1}{3}\)

\(B=\frac{1}{3}\)

\(\Leftrightarrow B=\frac{1}{Ix-2I+3}=\frac{1}{3}\)

\(\Leftrightarrow Ix-2I+3=3\)

\(\Leftrightarrow Ix-2I=0\)

\(\Leftrightarrow x=2\)

Vậy GTLN của\(A=\frac{1}{3}\Leftrightarrow x=2\)

Hà Minh Hiếu
Xem chi tiết
Đinh Đức Hùng
22 tháng 8 2017 lúc 14:52

Bđt phụ \(a^2+b^2\ge\frac{\left(a+b\right)^2}{2}\forall\)

\(\Leftrightarrow2a^2+2b^2\ge a^2+2ab+b^2\Leftrightarrow a^2+b^2\ge2ab\Leftrightarrow a^2+b^2-2ab=\left(a-b\right)^2\ge0\)(đúng)

Áp dụng ta được : 

\(A\ge\frac{\left(x+y+\frac{1}{x}+\frac{1}{y}\right)^2}{2}\ge\frac{\left(x+y+\frac{4}{x+y}\right)^2}{2}=\frac{\left(1+4\right)^2}{2}=\frac{25}{2}\)

Dấu "=" xảy ra \(\Leftrightarrow x=y=\frac{1}{2}\)

Vậy \(A_{min}=\frac{25}{2}\) tại \(x=y=\frac{1}{2}\)