tìm giá trị lớn nhất của A=/x-2015/+/2016+x/+/2017-x/
Tìm giá trị lớn nhất của A biết : A=2017-(|x+2015|+|x-2016|)
trăm năm trong cõi người ta
ai ai cũng phải thở ra hít vào
trăm năm bất kể người nào
ai ai cũng phải hít vào thở ra
rất xa như nước cu-ba
người ta còn phải thở ra hít vào
rất gần ngay như nước lào
người ta cũng phải hít vào thở ra
vậy nên trong cõi người ta
không ai không phải thở ra hít vào
vậy nên bất kể người nào
không ai không phải hit vào thở ra...
các bạn thấy có hay ko, vs nha
Tìm giá trị của a để biểu thức sau có giá trị
lớn nhất:
(2015 x 2016 x 2017 x 2018): (2018 - a)
Tìm giá trị lớn nhất hoặc giá trị nhỏ nhất của:
A = |x+2015|-2016
B = 2|x+2015|+2016
C = |x-2015|+|x-2016|
D = |x-2015|+(x+2)2016+17
E = -|x-2015|+|x-2017|+(x-2016)2018.
GIẢI GIÚP MÌNH VỚI
Do |x+2015| lớn hoặc = 0 với mọi x nên A bé hơn hoặc bằng -2016
Dấu "=" xảy ra khi và chỉ khi x+2015=0
=> x=-2015
tìm giá trị nhỏ nhất của A=/x-2015/+/2016-x/+/2017-x/
Tìm giá trị nhỏ nhất của :
A = / x-2015 / + / x - 2016 / + / x-2017 /
Ta có:
\(A=\left|x-2015\right|+\left|x-2016\right|+\left|x-2017\right|\)
\(=\left|x-2015\right|+\left|x-2016\right|+\left|2017-x\right|\)
\(\ge x-2015+0+2017-x=2\)
Dấu = khi \(\begin{cases}x-2015\ge0\\x-2016=0\\x-2017\le0\end{cases}\)\(\Rightarrow\begin{cases}x\ge2015\\x=2016\\x\le2017\end{cases}\)\(\Rightarrow x=2016\)
Vậy MinA=2 khi x=2016
Tìm giá trị nhỏ nhất của A=/x-2015/+/2016-x/+/2017-x/ khi x thay đổi
Tìm giá trị nhỏ nhất của: |x-2015|+|2016-x| +|x-2017|
Đặt A = |x-2015|+|2016-x| +|x-2017|
=> A = |x-2015|+|x-2016| +|2017-x|
Ta có |x-2015| \(\ge\)x - 2015 (với mọi x)
|x-2016| \(\ge\)0 (với mọi x)
|2017-x| \(\ge\) 2017 - x (với mọi x)
=> |x-2015|+|x-2016| +|2017-x| \(\ge\)(x - 2015) + 0 + (2017 - x) (với mọi x)
=> A \(\ge\)2 (với mọi x)
=> A đạt GTNN là 2 khi
\(\hept{\begin{cases}\text{|x-2015|\ge0}\\\text{|x-2016|=0}\\\text{|2017-x|\ge0}\end{cases}}\Leftrightarrow\hept{\begin{cases}x-2015\ge0\\x-2016=0\\2017-x\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge2015\\x=2016\\x\le2017\end{cases}\Rightarrow x=2016}\)
Vậy GTNN của A là 2 tại x = 2016
tìm giá trị nhỏ nhất của biểu thức P = |x-2015| + |x-2016| + |x-2017|
Lời giải:
Áp dụng BĐT $|a|+|b|\geq |a+b|$ (để cm BĐT này bạn có thể tìm trên mạng, rất nhiều)
$|x-2015|+|x-2017|=|x-2015|+|2017-x|\geq |x-2015+2017-x|=2$
$|x-2016|\geq 0$ theo tính chất trị tuyệt đối
$\Rightarrow P\geq 2+0=2$
Vậy $P_{\min}=2$. Giá trị này đạt được tại $(x-2015)(2017-x)\geq 0$ và $x-2016=0$
Hay $x=2016$
Tìm giá trị nhỏ nhất của biểu thức B =|x-2015|-|x-2016|+|x-2017|
hsg toán mà ko biết làm bài dễ như thế này à
\(B=\left(|x-2015|\right)+\left(|x-2017|\right)+\left(|x-2016|\right)\)
\(B=\left(|x-2015|\right)+\left(|2017-x|\right)+\left(|x-2016|\right)\)
\(>=|x-2015+2017-x|+|x-2016|>=2+0=2\)
Dâu = xảy ra khi và chỉ khi \(\left(x-2015\right).\left(2017-x\right)>=0vàx-2016=0\Leftrightarrow x=2016\)
Vậy min P=2 khi và chỉ khi x=2016