Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Hoà BÌnh
Xem chi tiết
Nguyễn Huệ Lam
24 tháng 6 2017 lúc 8:56

A B C D M N O F E

a)

Tứ giác BMDN có BN=DM (=1/2AD=1/2BC) VÀ BN//DM (AD//BC) nên BMDN là hình bình hành. => BM//DN

Tam giác ADF có:

M là trung điểm của AD

ME//DF ( BM//DN )

Suy ra E là trung điểm của AF hay AE=EF       (1)

Tam giác BCE có:

N là trung điểm của BC

NF//DE ( BM//DN )

Suy ra F là trung điểm của CE hay EF=FC       (2)

Từ (1) và (2) suy ra AE=EF=FC

b) 

Xét \(\Delta AME\)và \(\Delta CNF\)

AM=CN ( =1/2AD = 1/2BC )

AE=CF (Theo câu a)

\(\widehat{MAE}=\widehat{NCF}\)(Vì AD//BC)

Suy ra \(\Delta AME=\Delta CNF\left(c.g.c\right)\)

\(\Rightarrow ME=NF\)( 2 cạnh tương ứng)

Mà ME//NF ( Vì BM//DN ) nên tứ giác MENF là hình bình bình hành

               Các bạn nhớ k ủng hộ mik nha! Thanks!

Sóng Bùi
Xem chi tiết
Triệu Bảo Ngọc
Xem chi tiết
Nguyễn Thị Ngọc Ánh
Xem chi tiết
Lê Tài Bảo Châu
24 tháng 2 2020 lúc 21:45

A B C D E F G H

a) Xét tam giác  ADB có: 

\(\frac{AE}{AB}=\frac{AH}{AD}\left(gt\right)\)

\(\Rightarrow HE//DB\left(1\right)\)( định lý Ta-let đảo )

Xét tam giác CDB có:

\(\frac{CF}{CB}=\frac{CG}{CD}\left(gt\right)\)

\(\Rightarrow GF//BD\left(2\right)\)

Từ (1) và (2) \(\Rightarrow HE//GF\)

CMTT\(HG//EF\)( cùng // AC)

Xét tứ giác EFGH có:

\(\hept{\begin{cases}HE//GF\left(cmt\right)\\HG//EF\left(cmt\right)\end{cases}\Rightarrow EFGH}\)là hình bình hành (dhnb)

b) 

Đặt\(\frac{AE}{AB}=\frac{AH}{AD}=\frac{CF}{CB}=\frac{CG}{CD}=k\)

Xét tam giác ADB có:

\(HE//BD\left(gt\right)\)

\(\Rightarrow\frac{HE}{BD}=\frac{AE}{AB}\)( hệ quả của định lý Ta-let)

\(\Rightarrow\frac{HE}{BD}=k\)( vì \(\frac{AE}{AB}=k\))

\(\Rightarrow HE=k.BD\)

Xét tam giác ABC có:

\(EF//AC\left(cmt\right)\)

\(\Rightarrow\frac{EF}{AC}=\frac{BE}{BA}\)( hệ quả của định lý Ta-let)

\(\Rightarrow\frac{EF}{AC}=\frac{AB-AE}{BA}=1-k\)

\(\Rightarrow EF=\left(1-k\right)AC\)

\(P_{EFGH}=2\left(HE+EF\right)\)

\(=2\left[k.BD+\left(1-k\right)AC\right]\)

\(=2AC\)không đổi  ( AC=BD do ABCD là hình chữ nhật )

Vậy chu vi của hbh EFGH có giá trị không đổi 

Khách vãng lai đã xóa
runtyler
25 tháng 2 2020 lúc 15:09

bạn bảo châu ơi

Khách vãng lai đã xóa
Tiến Hoàng Minh
Xem chi tiết
Tiến Hoàng Minh
13 tháng 10 2021 lúc 21:42

AD=a

nguyen thu hang
Xem chi tiết
phan nguyễn linh đan
Xem chi tiết
Cô Hoàng Huyền
23 tháng 8 2016 lúc 10:29

Em tự vẽ hình nhé. Ý sau cô nói rõ yêu cầu hơn là chứng minh hình bình hành MNPQ có chu vi bằng tổng độ dài hai đường chéo của tứ giác ABCD.

Xét tứ giác EFMN có OF = ON; OE = OM nên nó là hình bình hành (Tứ giác có hai đường chéo cắt nhau tại trung điểm mỗi đường)

Vậy thì MN // EF // AC và MN = EF = AC / 2 (Vì EF là đường trung bình tam giác BAC).

Hoàn toàn tương tự: QP // GH // AC và QP = GH = AC/2.

Vậy MNPQ là hình bình hành (Cặp cạnh đối song song và bằng nhau).

Khi đó ta có:

 \(p_{MNPQ}=PQ+PN+NM+MQ=\left(PQ+MN\right)+\left(MQ+PN\right)=AC+BD.\)

Vậy ta đã chứng minh xong bài toán.

King Of Void
24 tháng 9 2017 lúc 16:42

Cô ơi em ko hiểu.Theo em thì ta phải cm MN//=AC và PQ//=AC

Thiệnn Lànhh Khôii
Xem chi tiết
Ahn Jiwon
Xem chi tiết
Nguyễn Lê Phước Thịnh
6 tháng 1 2021 lúc 23:17

a) Xét ΔABC có

E là trung điểm của AB(gt)

F là trung điểm của BC(gt)

Do đó: EF là đường trung bình của ΔABC(Định nghĩa đường trung bình của tam giác)

⇒EF//AC và \(EF=\dfrac{AC}{2}\)(Định lí 2 về đường trung bình của tam giác)(1)

Xét ΔADC có

H là trung điểm của AD(gt)

G là trung điểm của CD(gt)

Do đó: HG là đường trung bình của ΔADC(Định nghĩa đường trung bình của tam giác)

⇒HG//AC và \(HG=\dfrac{AC}{2}\)(Định lí 2 về đường trung bình của tam giác)(2)

Từ (1) và (2) suy ra HG//EF và HG=EF

Xét ΔABD có 

E là trung điểm của AB(gt)

H là trung điểm của AD(gt)

Do đó: EH là đường trung bình của ΔABD(Định nghĩa đường trung bình của tam giác)

⇒EH//BD và \(EH=\dfrac{BD}{2}\)(Định lí 2 về đường trung bình của tam giác)

Ta có: EH//BD(cmt)

BD⊥AC(gt)

Do đó: EH⊥AC(Định lí 2 từ vuông góc tới song song)

Ta có: HG//AC(cmt)

EH⊥AC(Cmt)

Do đó: HG⊥HE(Định lí 2 từ vuông góc tới song song)

hay \(\widehat{EHG}=90^0\)

Xét tứ giác EHGF có 

HG//EF(cmt)

HG=FE(cmt)

Do đó: EHGF là hình bình hành(Dấu hiệu nhận biết hình bình hành)

Hình bình hành EHGF có \(\widehat{EHG}=90^0\)(cmt)

nên EHGF là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)

b) Ta có: EFGH là hình chữ nhật(cmt)

nên \(S_{EFGH}=EF\cdot EH\)

\(\Leftrightarrow S_{EFGH}=\dfrac{AC}{2}\cdot\dfrac{BD}{2}=\dfrac{10}{2}\cdot\dfrac{8}{2}=5\cdot4=20cm^2\)

Vậy: Diện tích tứ giác EFGH khi AC=10cm và BD=8cm là 20cm2

c) Hình chữ nhật EFGH trở thành hình vuông khi EH=HG

hay AC=BD

Vậy: Khi tứ giác ABCD có thêm điều kiện AC=BD thì EFGH trở thành hình vuông