Cho ba số a,b,c thỏa mãn: \(a^2+b^2+ab+bc+ca< 0\).Chứng minh rằng: \(a^2+b^2< c^2\)
Cho ba số thực a,b,c thỏa mãn a2+b2+c2=3 . Chứng minh rằng : ab+bc+ca+a+b+c bé hơn hoặc bằng 6
Áp dụng BĐT Cauchy-Schwarz ta có:
\(a^2+b^2+c^2\ge\frac{\left(a+b+c\right)^2}{3}\Rightarrow\left(a+b+c\right)^2\le9\Rightarrow a+b+c\le3\left(1\right)\)
Ta có:\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\forall a,b,c\)
\(\Leftrightarrow a^2-2ab+b^2+b^2-2bc+c^2+c^2-2ca+a^2\ge0\)
\(\Leftrightarrow2\left(a^2+b^2+c^2\right)\ge2\left(ab+bc+ca\right)\)
\(\Leftrightarrow a^2+b^2+c^2\ge ab+bc+ca\)
\(\Rightarrow ab+bc+ca\le3\left(2\right)\)
Cộng vế với vế của\(\left(1\right),\left(2\right)\)ta được:
\(a+b+c+ab+bc+ca\le3+3=6\left(đpcm\right)\)
Cho các số thực a,b,c khác 0 thỏa mãn ab+bc+ca=1 và a2b+c=b2c+a=c2a+b. Chứng minh rằng a=b=c
cho a,b,c >0 thỏa mãn \(a^2+b^2+c^2=3\) chứng minh rằng \(\dfrac{a}{ab+3}+\dfrac{b}{bc+3}+\dfrac{c}{ca+3}\le\dfrac{3}{4}\)
Bài 1 :
a) Cho a , b , c là ba số thực thỏa mãn \(\left(a+b+c\right)^2=3\left(ab+bc+ca\right)\) . Chứng minh rằng a = b = c
b) Cho a , b , là ba số thực thỏa mãn a + b + c = 0 . Chứng minh rằng \(a^3+b^3+c^3=3abc\)
c) Cho a , b , c là ba số thực thỏa mãn \(a^3+b^3+c^3=3abc\) . Liệu có thể khẳng định rằng a + b + c = 0
a, \(\left(a+b+c\right)^2=3\left(ab+bc+ac\right)\Leftrightarrow a^2+b^2+c^2+2ab+2bc+2ac=3\left(ab+bc+ac\right)\)
\(\Leftrightarrow a^2+b^2+c^2-ab-bc-ac=0\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
=> a=b=c
b, \(0=\left(a+b+c\right)^3=a^3+b^3+c^3+6abc+3a^2b+3ab^2+3b^2c+3bc^2+3c^2a+3ca^2\)
\(=a^3+b^3+c^3+6abc+3ab\left(a+b\right)+3bc\left(b+c\right)+3ac\left(a+c\right)\)
\(=a^3+b^3+c^3+6abc-3abc-3abc-3abc\)
\(\Rightarrow a^3+b^3+c^3=3abc\)
\(a^3+b^3+c^3-3abc=\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc\)
\(=\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2\right)-3ab\left(a+b+c\right)\)
\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)=0\)
Từ (a) -> hoặc a+b+c = 0 hoặc a=b=c. Vậy ko thể khẳng định như vây
Cho a, b, c là các số thực dương thỏa mãn abc=a+b+c+2. Chứng minh rằng ab+bc+ca ≥ 2(a+b+c)
Cho a,b,c là số thực thỏa mãn a^2+b^2+c^2=ab+bc+ca. chứng minh rằng a=b=c
Giup mình với huhu
\(a^2+b^2>=2ab\)
\(b^2+c^2>=2bc\)
\(a^2+c^2>=2ac\)
=> \(2\left(a^2+b^2+c^2\right)>=2\left(ab+bc+ac\right)\)DẤU '=' xảy ra khi a=b=c
Câu 2.
a) Cho a, b, c> 0. Chứng tỏ rằng M= (a/a+b) + ( b/b+c) + (c/c+a) không là số nguyên
b) Cho a,b,c thỏa mãn a+b+c = 0. Chứng minh rằng ab + bc + ca < hoặc bằng 0
Bài 2: Cho a, b, c là các số nguyên thỏa mãn ab+bc+ca=3. Chứng minh rằng:(a^2+3)(b^2+3)(c^2+3) là số chính phương
Ta có: \(\left(a^2+3\right)\left(b^2+3\right)\left(c^2+3\right)=\left(a^2+ab+bc+ca\right)\left(b^2+ab+bc+ca\right)\left(c^2+ab+bc+ca\right)=\left[\left(a+b\right)\left(b+c\right)\left(c+a\right)\right]^2\)
Bài 1: Choa;b;c là các số khác 0 và a^2= bc; b^2= ab; c^2=ac.Cmr a=b=c
Bài2: Cho a;b;c là các số khác 0 thỏa mãn ab+ac/2=bc+ba/3=ca+cb/4. Chứng tỏ : a/3= b/5=c/15