giá trị nguyên của x thỏa mãn
\(\left(x-\frac{3}{5}\right).\left(x+\frac{2}{7}\right)< 0\) là x =
Giá trị nguyên của x thỏa mãn \(\left(x-\frac{3}{5}\right)\left(x+\frac{2}{7}\right)< 0\) là x =
lới giải đầy đủ, mình sẽ tick
Giá trị bé nhất của \(\left|x^2+3\right|+\left|y^2+6\right|=12,5\)
Giá trị của x thỏa mãn \(\frac{x+9}{x+5}=\frac{2}{7}\)
Số giá trị của x thỏa mãn \(\left|x+\frac{5}{2}\right|+\left|\frac{2}{5}-x\right|=0\)
Giá trị của x thỏa mãn \(\frac{x-1}{x+2}=\frac{x-2}{x+3}\)
Giá trị của x thỏa mãn \(\frac{x+9}{x+5}=\frac{2}{7}\)
Số giá trị của x thỏa mãn \(\left|x+\frac{5}{2}\right|+\left|\frac{2}{5}-x\right|=0\)
\(\left(\frac{x}{2}\right)^2+\left(\frac{x}{3}\right)^2+\left(\frac{x}{4}\right)^2+\left(\frac{x}{5}\right)^2+\left(\frac{x}{6}\right)^2+\left(\frac{x}{7}\right)^2\) . Tìm giá trị thỏa mãn của x
giá trị x>0 nguyên thỏa mãn: \(-\frac{7}{3}< \left|\frac{2}{7}-x\right|-\frac{5}{2}< -\frac{7}{4} \)
1)tìm các số nguyên x và y thỏa mãn:\(y^2=x^2+x+1\)
2)cho các số thực x và y thỏa mãn \(\left(x+\sqrt{a+x^2}\right)\left(y+\sqrt{a+y^2}\right)\)=a
tìm giá trị biểu thức \(4\left(x^7+y^7\right)+2\left(x^5+y^5\right)+11\left(x^3+y^3\right)+2016\)
3)cho x;y là các số thực khác 0 thỏa mãn x+y khác 0
cmr \(\frac{1}{\left(x+y\right)^3}\left(\frac{1}{x^3}+\frac{1}{y^3}\right)+\frac{3}{\left(x+y\right)^4}\left(\frac{1}{x^2}+\frac{1}{y^2}\right)+\frac{6}{\left(x+y\right)^5}\left(\frac{1}{x}+\frac{1}{y}\right)\)\(=\frac{1}{x^3y^3}\)
4)cho a,b,c là các số dương.cmr\(\sqrt{\frac{a^3}{a^3+\left(b+c\right)^3}}+\sqrt{\frac{b^3}{b^3+\left(a+c\right)^3}}+\sqrt{\frac{c^3}{c^3+\left(a+b\right)^3}}\ge1\)
Tập hợp các giá trị nguyên x thỏa mãn \(\left(x+\frac{5}{4}\right)\times\left(x-\frac{9}{7}\right)
ta có \(\left(x+\frac{5}{4}\right).\left(x-\frac{9}{7}\right)\left(x-\frac{9}{7}\right)\)
suy ra \(\left(x+\frac{5}{4}\right)\)là số dương còn \(\left(x-\frac{9}{7}\right)\)là số âm
x+5/4>0suy ra x>0-5/4 suy ra x>-5/4
x-9/7<0 suy ra x<9/7+0 suy ra x<9/7
-5/4<x<9/7
Câu 1: Giá trị x=... thì biểu thức \(D=\frac{-1}{5}\left(\frac{1}{4}-2x\right)^2-\left|8x-1\right|+2016\) đạt giá trị lớn nhất.
Câu 2: Tập hợp giá trị x nguyên thỏa mãn \(\left|2x-7\right|+\left|2x+1\right|\le8\)
Câu 3: Giá trị lớn nhất của \(B=3-\sqrt{x^2-25}\)
Câu 4: Số phần tử của tập hợp \(\left\{x\in Z\left|x-2\right|\le9\right\}\)
Câu 5: Giá trị nhỏ nhất của biểu thức D= \(\frac{-3}{x^2+1}-2\)
Câu 6: Có bao nhiêu cặp số (x;y) thỏa mãn đẳng thức xy=x+y
Câu 7: Gọi A là tập hợp các số nguyên dương sao cho giá trị của biểu thức: \(\frac{2\sqrt{x}+3}{\sqrt{x}-1}\) là nguyên. Số phần tử của tập hợp A là...
Câu 8: Cho x;y là các số thỏa mãn \(\left(x+6\right)^2+\left|y-7\right|=0\) khi đó x+y=...
Câu 9: Phân số dương tối giản có mẫu khác 1, biết rằng tổng của tử và mẫu số bằng 18, nó có thể viết dưới dạng số thập phân hữu hạn. Có... phân số thỏa mãn
số giá trị của x thỏa mãn \(\frac{\left|4-x\right|+\left|x+2\right|}{\left|x+5\right|+\left|x-3\right|}=-\frac{1}{2}\) là
Xét tử \(\left|4-x\right|+\left|x+2\right|\ge0\)
Xét mẫu \(\left|x+5\right|+\left|x-3\right|\ge0\)
Do đó \(\frac{\left|4-x\right|+\left|x+2\right|}{\left|x+5\right|+\left|x-3\right|}\ge0\)
Nhưng đề bài cho \(\frac{\left|4-x\right|+\left|x+2\right|}{\left|x+5\right|+\left|x-3\right|}=-\frac{1}{2}<0\) nên không có giá trị nào của x thỏa mãn.