Cho f(x) là đa thức với hệ số hữu tỉ . Chứng minh rằng ;
a) Nếu f(\(x^3\) )chia hết cho x-1 thì (\(x^3\)) chia hết cho \(x^2+x+1\)
b)tổng quát : Nếu f(\(x^n\)) chia hết cho x-1 thì f(\(x^n\)) chia hết cho \(x^{n-1}+x^{n-2}+...+x+1\)
Cho đa thức f(x) = ax2 + bx + c với a, b, c là các hệ số nguyên sao cho abc là số nguyên tố có 3 chữ số. Chứng minh rằng : f(x) không có nghiệm hữu tỉ.
1)Cho f(x) = ax2 + bx + c có tính chất f(1), f(4), f(9) là các số hữu tỉ. Chứng minh rằng: a, b, c là các số hữu tỉ.
2)Cho đa thức P(x) thỏa mãn: x.P(x + 2) = (x2 – 9)P(x). Chứng minh rằng: Đa thức P(x) có ít nhất ba nghiệm.
Chứng minh rằng nếu các hệ số của đa thức:
\(f\left(x\right)=ax^2+bx+c\)
là những số nguyên lẻ thì đa thức \(f\left(x\right)\)không thể có nghiệm số hữu tỉ.
cho đa thức f(x)=ax^2+bx+c sao cho f(1);f(4);f(9) là các số hữu tỉ. Chứng minh khi đó a,b,c là các số hữu tỉ
Cho P(x)=a.x^3+b.x+c là đa thức với hệ số hữu tỉ
chứng minh rằng:
P(n) là số nguyên với mọi n khi và chỉ khi c, a+b và 6a là các số
Cho đa thức f(x) = ax2 + bx + c với a, b, c là các hệ số nguyên sao cho \(\overline{abc}\) là số nguyên tố có 3 chữ số. Chứng minh rằng : f(x) không có nghiệm hữu tỉ.
Chứng minh rằng với mọi đa thức có hệ số hữu tỉ nhận \(\sqrt{a}+\sqrt{b}+\sqrt{c}\) là nghiệm đều chia hết cho\(x^2-5\)
Cho f(x) là đa thức bậc 4 với hệ số nguyên. Chứng minh rằng f(x) chia hết cho 7 với mọi x thì từng hệ số của f(x) chia hết cho 7
Gọi \(P\left(x\right)=ax^4+bx^3+cx^2+dx+e\)
Theo bài ta có : \(P\left(x\right)⋮7\Rightarrow\hept{\begin{cases}P\left(0\right)⋮7\\P\left(1\right)⋮7\\P\left(-1\right)⋮7\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}e⋮7\\a+b+c+d+e⋮7\\a-b+c-d+e⋮7\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}a+b+c+d⋮7\\a-b+c-d⋮7\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}a+c⋮7\\b+d⋮7\end{cases}}\)
Mặt khác ta có : \(P\left(2\right)=16a+8b+4c+d+e⋮7\)
\(\Leftrightarrow2a+b+4c+d⋮7\)
\(\Leftrightarrow2\left(a+c\right)+b+d+2c⋮7\)
\(\Leftrightarrow2c⋮7\Leftrightarrow c⋮7\Leftrightarrow a⋮7\)
Chứng minh tương tự thì ta có \(a,b,c,d,e⋮7\). Ta có đpcm.
cho đa thức với hệ số nguyên f (n ) có f (1 ) là 2 số lẻ . chứng minh rằng f ( x ) không có nghiệm nguyên.
cho đa thức bậc ba f(x) với hệ số x3 là 1 số nguyên dương và f(5)-f(3)=2022 chứng minh rằng f(7)-f(1) là hợp số
Đặt \(f\left(x\right)=ax^3+bx^2+cx+d\left(a\inℤ^+\right)\)
\(f\left(5\right)=125a+25b+5c+d\)
\(f\left(3\right)=27a+9b+3c+d\)
\(\Rightarrow f\left(5\right)-f\left(3\right)=98a+16b+2c\)
Mà \(f\left(5\right)-f\left(3\right)=2022\) nên \(98a+16b+2c=2022\)
\(\Leftrightarrow49a+8b+c=1011\)
Lại có \(f\left(7\right)=343a+49b+7c+d\)
\(f\left(1\right)=a+b+c+d\)
\(\Rightarrow f\left(7\right)-f\left(1\right)=342a+48b+6c\) \(=6\left(57a+8b+c\right)\) \(=6\left(8a+1011\right)\) (vì \(49a+8b+c=1011\))
Mà do \(a\inℤ^+\) nên \(f\left(7\right)-f\left(1\right)\) là hợp số (đpcm)
công thức tổng quát: f(x)=x3 sdasdasdadasd