Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Duyên Lương
Xem chi tiết
Nguyễn Võ Anh Nguyên
13 tháng 8 2017 lúc 15:25

3) Đặt b+c=x;c+a=y;a+b=z.

=>a=(y+z-x)/2 ; b=(x+z-y)/2 ; c=(x+y-z)/2

BĐT cần CM <=> \(\frac{y+z-x}{2x}+\frac{x+z-y}{2y}+\frac{x+y-z}{2z}\ge\frac{3}{2}\)

VT=\(\frac{1}{2}\left(\frac{y}{x}+\frac{z}{x}-1+\frac{x}{y}+\frac{z}{y}-1+\frac{x}{z}+\frac{y}{z}-1\right)\)

\(=\frac{1}{2}\left[\left(\frac{x}{y}+\frac{y}{x}\right)+\left(\frac{y}{z}+\frac{z}{y}\right)+\left(\frac{x}{z}+\frac{z}{x}\right)-3\right]\)

\(\ge\frac{1}{2}\left(2+2+2-3\right)=\frac{3}{2}\)(Cauchy)

Dấu''='' tự giải ra nhá

pham thi thu trang
13 tháng 8 2017 lúc 18:00

Bài 4 

dễ chứng minh \(\left(a+b\right)^2\ge4ab;\left(b+c\right)^2\ge4bc;\left(a+c\right)^2\ge4ac\)

\(\Rightarrow\left(a+b\right)^2\left(b+c\right)^2\left(a+c\right)^2\ge64a^2b^2c^2\)

rồi khai căn ra \(\Rightarrow\)dpcm. 

đấu " = " xảy ra \(\Leftrightarrow\)\(a=b=c\)

pham thi thu trang
13 tháng 8 2017 lúc 18:16

bài 1 \(\left(\frac{x}{y}\right)^2+\left(\frac{y}{z}\right)^2\ge2\times\frac{x}{y}\times\frac{y}{z}=2\frac{x}{z}\)

làm tương tự rồi cộng các vế các bất đẳng thức lại với nhau ta có dpcm ( cộng xong bạn đặt 2 ra ngoài ý, mk ngại viết nhiều hhehe) 

       

vũ tiền châu
Xem chi tiết
Lầy Văn Lội
8 tháng 10 2017 lúc 16:38

Bài 2 : đã cm bên kia

Bài 1: :| 

we had điều này:

\(2=\frac{2014}{x}+\frac{2014}{y}+\frac{2014}{z}\)

\(\Leftrightarrow\frac{x-2014}{x}+\frac{y-2014}{y}+\frac{z-204}{z}=1\)

Xòng! bunyakovsky

P/s : Bệnh lười kinh niên tái phát nên ít khi ol sorry :<

Huy Đào Quang
Xem chi tiết
Phan Thanh Tịnh
Xem chi tiết
o0o I am a studious pers...
13 tháng 7 2016 lúc 20:03

Ta có : \(\frac{a^2+b^2}{2}=ab\Rightarrow a^2+b^2=2ab\)

\(\Rightarrow a^2-ab+b^2=0\Rightarrow\left(a-b\right)^2=0\Rightarrow a=b\)

Tương tự : \(\frac{b^2+c^2}{2}=bc\Rightarrow b=c\)

\(\frac{a^2+c^2}{2}=ac\Rightarrow a=c\)

Áp dụng t/c bắc cầu ta dc : \(a=b=c\)

\(\Rightarrow\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=3a\times3=9a\)

✓ ℍɠŞ_ŦƦùM $₦G ✓
13 tháng 7 2016 lúc 19:58

=>a2+b2=2ab

=>a2-2ab+b2=0

=>(a-b)2=0=>a=b

tương tự=>b=c

=>a=b=c

\(\Rightarrow\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=3a.3=9a\)

Nguyễn Quỳnh Chi
13 tháng 7 2016 lúc 20:03

(a+b+c)(1/a+1/b+1/c)=3a.3/a=9

Thanh Cao
Xem chi tiết
Võ Đông Anh Tuấn
24 tháng 9 2016 lúc 9:33

\(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=1+\frac{a}{b}+\frac{b}{c}+\frac{b}{a}+1+\frac{b}{c}+\frac{c}{a}+\frac{c}{b}+1\)

\(=\left(1+1+1\right)+\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{a}{c}+\frac{c}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)\)

\(=3+\frac{a^2+b^2}{ab}+\frac{a^2+c^2}{ac}+\frac{b^2+c^2}{bc}\)

\(=3+\frac{a^2+b^2}{\frac{a^2+b^2}{2}}+\frac{a^2+c^2}{\frac{a^2+c^2}{2}}+\frac{b^2+c^2}{\frac{b^2+c^2}{2}}\)

\(=3+2+2+2=9\)

Phan Thanh Tịnh
Xem chi tiết
Nhi Đào Quỳnh
Xem chi tiết
Incursion_03
7 tháng 12 2018 lúc 22:39

B1) Từ \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\)

\(\Rightarrow\frac{xy+yz+zx}{xyz}=0\)

\(\Rightarrow xy+yz+zx=0\)

Ta có \(\left(x+y+z\right)^2=x^2+y^2+z^2+2\left(xy+yz+zx\right)\)

                                      \(=x^2+y^2+z^2+2.0\)

                                       \(=x^2+y^2+z^2\left(đpcm\right)\)

B2)  \(a^2+b^2+c^2=ab+bc+ca\)

\(\Leftrightarrow2a^2+2b^2+2c^2=2ab+2bc+2ca\)

\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

Vì \(\hept{\begin{cases}\left(a-b\right)^2\ge0\forall a;b\\\left(b-c\right)^2\ge0\forall b;c\\\left(c-a\right)^2\ge0\forall c;a\end{cases}\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0}\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}a=b\\b=c\\c=a\end{cases}\Leftrightarrow a=b=c\left(đpcm\right)}\)

kudo shinichi
8 tháng 12 2018 lúc 13:20

\(a^2+b^2+c^2=ab+bc+ca\)

\(\Leftrightarrow\left(a^2+b^2+c^2\right).2=\left(ab+bc+ca\right).2\)

\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

Ta có: \(\hept{\begin{cases}\left(a-b\right)^2\ge0\forall a,b\\\left(b-c\right)^2\ge0\forall b,c\\\left(c-a\right)^2\ge0\forall a,c\end{cases}}\)\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\forall a,b,c\)

Mà \(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

\(\Rightarrow\hept{\begin{cases}\left(a-b\right)^2=0\\\left(b-c\right)^2=0\\\left(c-a\right)^2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}a-b=0\\b-c=0\\c-a=0\end{cases}}\Leftrightarrow\hept{\begin{cases}a=b\\b=c\\c=a\end{cases}}\Leftrightarrow a=b=c\)

Vậy \(a^2+b^2+c^2=ab+bc+ca\)thì \(a=b=c\)

Duyên Lương
Xem chi tiết
Nguyễn Huy Tú
13 tháng 8 2017 lúc 15:16

Bài 3:
Áp dụng bất đẳng thức \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\ge\dfrac{9}{x+y+z}\) có:
\(\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}=\dfrac{a+b+c}{b+c}+\dfrac{a+b+c}{c+a}+\dfrac{a+b+c}{a+b}-3\)

\(=\left(a+b+c\right)\left(\dfrac{1}{b+c}+\dfrac{1}{c+a}+\dfrac{1}{a+b}\right)-3\)

\(\ge\left(a+b+c\right)\left(\dfrac{9}{2\left(a+b+c\right)}\right)-3\)

\(=\dfrac{9}{2}-3=1,5\)

Dấu " = " khi a = b = c

Bài 5:

Áp dụng bất đẳng thức AM - GM có:
\(a^2+b^2+c^2+d^2\ge2ab+2cd\ge4\sqrt{abcd}\)

Dấu " = " khi a = b = c = d = 1

Unruly Kid
13 tháng 8 2017 lúc 16:09

7) VP phải là abc nha

\(\left(b+c-a\right)\left(b+a-c\right)=b^2-\left(c-a\right)^2\le b^2\)

\(\left(c+a-b\right)\left(c+b-a\right)=c^2-\left(a-b\right)^2\le c^2\)

\(\left(a+b-c\right)\left(a+c-b\right)=a^2-\left(b-c\right)^2\le a^2\)

Nhân từng vế của 3 BĐT trên

\(\left[VT\right]^2\le VP^2\)

Các biểu thức trong ngoặc vuông đều dương nên khai phương ta được đpcm

Đẳng thức xảy ra khi và chỉ khi a=b=c

Unruly Kid
13 tháng 8 2017 lúc 16:11

2) Giả sử \(a\le0\):

Nếu a=0 thì trái với abc>0

Nếu a<0: Do a+b+c>0 nên b+c>0. Do abc>0 nên bc<0

Suy ra a(b+c)+bc<0, mâu thuẫn với ab+bc+ca>0

Vậy a>0

Tương tự ta có b>0;c>0

THI MIEU NGUYEN
Xem chi tiết