Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
trần khánh phong
Xem chi tiết
Minh Triều
25 tháng 7 2015 lúc 16:46

\(A=\sqrt{\sqrt{5}-\sqrt{3-\sqrt{29-12\sqrt{5}}}}\)

\(=\sqrt{\sqrt{5}-\sqrt{3-\sqrt{\left(2\sqrt{5}\right)^2-2.2\sqrt{5}.3+9}}}\)

\(=\sqrt{\sqrt{5}-\sqrt{3-\sqrt{\left(2\sqrt{5}-3\right)^2}}}\)

\(=\sqrt{\sqrt{5}-\sqrt{3-2\sqrt{5}+3}}\)

\(=\sqrt{\sqrt{5}-\sqrt{6-2\sqrt{5}}}\)

\(=\sqrt{\sqrt{5}-\sqrt{5-2\sqrt{5}.1+1}}\)

\(=\sqrt{\sqrt{5}-\sqrt{\left(\sqrt{5}-1\right)^2}}\)

\(=\sqrt{\sqrt{5}-\sqrt{5}+1}\)

\(=\sqrt{1}\)

\(=1\)

Vậy A là số tự nhiên

Minh Triều
25 tháng 7 2015 lúc 17:24

nhưng mà olm chọn rồi thì chọn nhiều đến mấy cũng cộng dc 3 điểm

Nao Tomori
25 tháng 7 2015 lúc 20:35

trơi , 1 bài mà triệu đang với ngọc vĩ , chat với nhau hết

Bình Lê
Xem chi tiết
qwerty
26 tháng 6 2017 lúc 10:10

3 bài đầu dễ tự làm nhé.

Bài 4:

\(B=\dfrac{\sqrt{3-2\sqrt{2}}}{\sqrt{17-12\sqrt{2}}}-\dfrac{\sqrt{3+2\sqrt{2}}}{\sqrt{17+12\sqrt{2}}}\)

\(=\dfrac{\sqrt{\left(1-\sqrt{2}\right)^2}}{\sqrt{\left(3-2\sqrt{2}\right)^2}}-\dfrac{\sqrt{\left(1+\sqrt{2}\right)^2}}{\sqrt{\left(3+2\sqrt{2}\right)^2}}\)

\(=\dfrac{\sqrt{2}-1}{3-2\sqrt{2}}-\dfrac{1+\sqrt{2}}{3+2\sqrt{2}}\)

\(=\left(\sqrt{2}-1\right)\left(3+2\sqrt{2}\right)-\left(1+\sqrt{2}\right)\left(3-2\sqrt{2}\right)\)

\(=3\sqrt{2}+4-3-2\sqrt{2}-\left(3-2\sqrt{2}+3\sqrt{2}-4\right)\)

\(=3\sqrt{2}+4-3-2\sqrt{2}-\left(-1+\sqrt{2}\right)\)

\(=3\sqrt{2}+4-3-2\sqrt{2}+1-\sqrt{2}\)

\(=0+2\)

\(=2\)

Vậy B là số tự nhiên.

Lê Thị Diệu Hiền
26 tháng 6 2017 lúc 9:51

1.

a) nhân cả tử lẫn mẫu với 1+ \(\sqrt{2}-\sqrt{5}\)

b) tương tự a

2.

a) tách 29 = 20 + 9 là ra hằng đẳng thức, tiếp tục.

Lê Đình Thái
25 tháng 8 2017 lúc 16:37

1.

a) \(\dfrac{1}{1+\sqrt{2}+\sqrt{5}}=\dfrac{1+\sqrt{2}-\sqrt{5}}{\left(1+\sqrt{2}+\sqrt{5}\right)\left(1+\sqrt{2}-\sqrt{5}\right)}\)

=\(\dfrac{1+\sqrt{2}-\sqrt{5}}{\left(1+\sqrt{2}\right)^2-\left(\sqrt{5}\right)^2}=\dfrac{1+\sqrt{2}-\sqrt{5}}{1+2\sqrt{2}+2-5}\)

=\(\dfrac{1+\sqrt{2}-\sqrt{5}}{2\sqrt{2}-2}\)

b) \(\dfrac{1}{\sqrt{x}+\sqrt{x+1}}=\dfrac{\sqrt{x}-\sqrt{x+1}}{\left(\sqrt{x}+\sqrt{x+1}\right)\left(\sqrt{x}-\sqrt{x+1}\right)}\)

=\(\dfrac{\sqrt{x}-\sqrt{x+1}}{\left(\sqrt{x}\right)^2-\left(\sqrt{x+1}\right)^2}=\dfrac{\sqrt{x}-\sqrt{x+1}}{x-x-1}=\dfrac{\sqrt{x}-\sqrt{x+1}}{-1}=-\sqrt{x}+\sqrt{x+1}\)

2.

a) \(\sqrt{\sqrt{5}-\sqrt{3-\sqrt{29-6\sqrt{20}}}}\)

=\(\sqrt{\sqrt{5}-\sqrt{3-\sqrt{\left(\sqrt{20}-3\right)^2}}}\)

=\(\sqrt{\sqrt{5}-\sqrt{3-\sqrt{20}+3}}\)

=\(\sqrt{\sqrt{5}-\sqrt{6-\sqrt{20}}}\)=\(\sqrt{\sqrt{5}-\sqrt{6-2\sqrt{5}}}\)

=\(\sqrt{\sqrt{5}-\sqrt{\left(\sqrt{5}-1\right)^2}}\)

=\(\sqrt{\sqrt{5}-\sqrt{5}+1}=\sqrt{1}=1\)

b)\(\sqrt{6+2\sqrt{5-\sqrt{13+\sqrt{48}}}}\)

=\(\sqrt{6+2\sqrt{5-\sqrt{13+2\sqrt{12}}}}\)

=\(\sqrt{6+2\sqrt{5-\sqrt{\left(\sqrt{12}+1\right)^2}}}\)

=\(\sqrt{6+2\sqrt{5-\sqrt{12}-1}}\)

=\(\sqrt{6+2\sqrt{4-\sqrt{12}}}\)

=\(\sqrt{6+2\sqrt{4-2\sqrt{3}}}=\sqrt{6+2\sqrt{\left(\sqrt{3}-1\right)^2}}\)

=\(\sqrt{6+2\sqrt{3}-2}=\sqrt{4+2\sqrt{3}}\)

=\(\sqrt{\left(\sqrt{3}+1\right)^2}=\sqrt{3}+1\)

c) \(\sqrt{\sqrt{5}-\sqrt{3-\sqrt{29-12\sqrt{5}}}}\)

=\(\sqrt{\sqrt{5}-\sqrt{3-\sqrt{\left(2\sqrt{5}-3\right)^2}}}\)

=\(\sqrt{\sqrt{5}-\sqrt{3-2\sqrt{5}+3}}\)

làm giống câu a

3. a=\(\sqrt{3-\sqrt{5}}\left(3+\sqrt{5}\right)\left(\sqrt{10}-\sqrt{2}\right)\)

=\(\sqrt{3-\sqrt{5}}\left(3\sqrt{10}+5\sqrt{2}-3\sqrt{2}-\sqrt{10}\right)\)

=\(\sqrt{3-\sqrt{5}}\left(2\sqrt{10}+2\sqrt{2}\right)\)

=\(\sqrt{3-\sqrt{5}}.\sqrt{2}\left(2\sqrt{5}+2\right)\)

=\(\sqrt{6-2\sqrt{5}}\left(2\sqrt{5}+2\right)=\left(\sqrt{5}-1\right)\left(2\sqrt{5}+2\right)\)

=\(10-2\sqrt{5}+2\sqrt{5}-2=8\)

vậy a là số tự nhiên

Nguyễn Thu Phương
Xem chi tiết
Nguyễn Thu Phương
1 tháng 9 2019 lúc 7:20

Ở câu a ko có chữ " b " nhé

Harry James Potter
Xem chi tiết
Phùng Minh Quân
4 tháng 7 2019 lúc 13:54

\(A^3=14+3\sqrt[3]{\left(7-\sqrt{50}\right)\left(7+\sqrt{50}\right)}\left(\sqrt[3]{7-\sqrt{50}}+\sqrt[3]{7+\sqrt{50}}\right)\)

\(A^3=14+3\sqrt[3]{49-50}.A\)\(\Leftrightarrow\)\(A^3=14-3A\)

\(\Leftrightarrow\)\(A^3+3A-14=0\)\(\Leftrightarrow\)\(A\left(A^2-4\right)+7\left(A-2\right)=0\)

\(\Leftrightarrow\)\(A\left(A-2\right)\left(A+2\right)+7\left(A-2\right)=0\)

\(\Leftrightarrow\)\(\left(A-2\right)\left(A^2+2A+7\right)=0\)

\(\Leftrightarrow\)\(A=2\) ( do \(A^2+2A+7=\left(A+1\right)^2+6>0\) ) 

Trà Nhật Đông
Xem chi tiết
Steolla
31 tháng 8 2017 lúc 12:20

a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)

b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)

=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)

c)Đặt x-y=a;y-z=b;z-x=c

a+b+c=x-y-z+z-x=o

đưa về như bài b

d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung

e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)

=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)

Nguoi Ngu
Xem chi tiết
Trà Nhật Đông
Xem chi tiết
Chonbi
Xem chi tiết
Darlingg🥝
17 tháng 11 2019 lúc 10:24

Thế muốn giải thích thì liệt kê đau đầu =(

\(\frac{3}{\sqrt{7}-5}-\frac{3}{\sqrt{7+5}}=\frac{-10}{9}\inℚ\)

\(\frac{\sqrt{7}+5}{\sqrt{7}-5}+\frac{\sqrt{7}-5}{\sqrt{7}+5}=12\inℚ\)

Đây là TH là số hữu tỉ còn lại.....

\(\frac{4}{2-\sqrt{3}}-\frac{4}{2+\sqrt{3}}=8\sqrt{3}\notinℚ\)

\(\frac{\sqrt{3}}{\sqrt{7}-2}-2\sqrt{7}=2-\sqrt{7}\notinℚ\)

Khách vãng lai đã xóa
Nguyễn  Phạm Hoàng trang
Xem chi tiết