cho a=\(\sqrt{\sqrt{5}-\sqrt{3-\sqrt{2\times9}-12\sqrt{5}}}\)CMR a là số tự nhiên
Cho \(A=\sqrt{\sqrt{5}-\sqrt{3-\sqrt{29-12\sqrt{5}}}}\)
Chứng minh A là số tự nhiên.
\(A=\sqrt{\sqrt{5}-\sqrt{3-\sqrt{29-12\sqrt{5}}}}\)
\(=\sqrt{\sqrt{5}-\sqrt{3-\sqrt{\left(2\sqrt{5}\right)^2-2.2\sqrt{5}.3+9}}}\)
\(=\sqrt{\sqrt{5}-\sqrt{3-\sqrt{\left(2\sqrt{5}-3\right)^2}}}\)
\(=\sqrt{\sqrt{5}-\sqrt{3-2\sqrt{5}+3}}\)
\(=\sqrt{\sqrt{5}-\sqrt{6-2\sqrt{5}}}\)
\(=\sqrt{\sqrt{5}-\sqrt{5-2\sqrt{5}.1+1}}\)
\(=\sqrt{\sqrt{5}-\sqrt{\left(\sqrt{5}-1\right)^2}}\)
\(=\sqrt{\sqrt{5}-\sqrt{5}+1}\)
\(=\sqrt{1}\)
\(=1\)
Vậy A là số tự nhiên
nhưng mà olm chọn rồi thì chọn nhiều đến mấy cũng cộng dc 3 điểm
trơi , 1 bài mà triệu đang với ngọc vĩ , chat với nhau hết
1. Trục căn thức ở mẫu:
a) \(\dfrac{1}{1+\sqrt{2}+\sqrt{5}} \)
b) \(\dfrac{1}{\sqrt{x}+\sqrt{x+1}}\)
2. Tính:
a) \(\sqrt{\sqrt{5}-\sqrt{3-\sqrt{29-6\sqrt{20}}}}\)
b) \(\sqrt{6+2\sqrt{5-\sqrt{13+\sqrt{48}}}}\)
c) \(\sqrt{\sqrt{5}-\sqrt{3-\sqrt{29-12\sqrt{5}}}}\)
3. Cho a = \(\sqrt{3-\sqrt{5}}\left(3+\sqrt{5}\right)\left(\sqrt{10}-\sqrt{2}\right)\)
Chứng minh rằng a là số tự nhiên.
4. Cho b = \(\dfrac{\sqrt{3-2\sqrt{2}}}{\sqrt{17-12\sqrt{2}}}-\dfrac{\sqrt{3+2\sqrt{2}}}{\sqrt{17+12\sqrt{2}}}\)
b có phải là số tự nhiên không?
3 bài đầu dễ tự làm nhé.
Bài 4:
\(B=\dfrac{\sqrt{3-2\sqrt{2}}}{\sqrt{17-12\sqrt{2}}}-\dfrac{\sqrt{3+2\sqrt{2}}}{\sqrt{17+12\sqrt{2}}}\)
\(=\dfrac{\sqrt{\left(1-\sqrt{2}\right)^2}}{\sqrt{\left(3-2\sqrt{2}\right)^2}}-\dfrac{\sqrt{\left(1+\sqrt{2}\right)^2}}{\sqrt{\left(3+2\sqrt{2}\right)^2}}\)
\(=\dfrac{\sqrt{2}-1}{3-2\sqrt{2}}-\dfrac{1+\sqrt{2}}{3+2\sqrt{2}}\)
\(=\left(\sqrt{2}-1\right)\left(3+2\sqrt{2}\right)-\left(1+\sqrt{2}\right)\left(3-2\sqrt{2}\right)\)
\(=3\sqrt{2}+4-3-2\sqrt{2}-\left(3-2\sqrt{2}+3\sqrt{2}-4\right)\)
\(=3\sqrt{2}+4-3-2\sqrt{2}-\left(-1+\sqrt{2}\right)\)
\(=3\sqrt{2}+4-3-2\sqrt{2}+1-\sqrt{2}\)
\(=0+2\)
\(=2\)
Vậy B là số tự nhiên.
1.
a) nhân cả tử lẫn mẫu với 1+ \(\sqrt{2}-\sqrt{5}\)
b) tương tự a
2.
a) tách 29 = 20 + 9 là ra hằng đẳng thức, tiếp tục.
1.
a) \(\dfrac{1}{1+\sqrt{2}+\sqrt{5}}=\dfrac{1+\sqrt{2}-\sqrt{5}}{\left(1+\sqrt{2}+\sqrt{5}\right)\left(1+\sqrt{2}-\sqrt{5}\right)}\)
=\(\dfrac{1+\sqrt{2}-\sqrt{5}}{\left(1+\sqrt{2}\right)^2-\left(\sqrt{5}\right)^2}=\dfrac{1+\sqrt{2}-\sqrt{5}}{1+2\sqrt{2}+2-5}\)
=\(\dfrac{1+\sqrt{2}-\sqrt{5}}{2\sqrt{2}-2}\)
b) \(\dfrac{1}{\sqrt{x}+\sqrt{x+1}}=\dfrac{\sqrt{x}-\sqrt{x+1}}{\left(\sqrt{x}+\sqrt{x+1}\right)\left(\sqrt{x}-\sqrt{x+1}\right)}\)
=\(\dfrac{\sqrt{x}-\sqrt{x+1}}{\left(\sqrt{x}\right)^2-\left(\sqrt{x+1}\right)^2}=\dfrac{\sqrt{x}-\sqrt{x+1}}{x-x-1}=\dfrac{\sqrt{x}-\sqrt{x+1}}{-1}=-\sqrt{x}+\sqrt{x+1}\)
2.
a) \(\sqrt{\sqrt{5}-\sqrt{3-\sqrt{29-6\sqrt{20}}}}\)
=\(\sqrt{\sqrt{5}-\sqrt{3-\sqrt{\left(\sqrt{20}-3\right)^2}}}\)
=\(\sqrt{\sqrt{5}-\sqrt{3-\sqrt{20}+3}}\)
=\(\sqrt{\sqrt{5}-\sqrt{6-\sqrt{20}}}\)=\(\sqrt{\sqrt{5}-\sqrt{6-2\sqrt{5}}}\)
=\(\sqrt{\sqrt{5}-\sqrt{\left(\sqrt{5}-1\right)^2}}\)
=\(\sqrt{\sqrt{5}-\sqrt{5}+1}=\sqrt{1}=1\)
b)\(\sqrt{6+2\sqrt{5-\sqrt{13+\sqrt{48}}}}\)
=\(\sqrt{6+2\sqrt{5-\sqrt{13+2\sqrt{12}}}}\)
=\(\sqrt{6+2\sqrt{5-\sqrt{\left(\sqrt{12}+1\right)^2}}}\)
=\(\sqrt{6+2\sqrt{5-\sqrt{12}-1}}\)
=\(\sqrt{6+2\sqrt{4-\sqrt{12}}}\)
=\(\sqrt{6+2\sqrt{4-2\sqrt{3}}}=\sqrt{6+2\sqrt{\left(\sqrt{3}-1\right)^2}}\)
=\(\sqrt{6+2\sqrt{3}-2}=\sqrt{4+2\sqrt{3}}\)
=\(\sqrt{\left(\sqrt{3}+1\right)^2}=\sqrt{3}+1\)
c) \(\sqrt{\sqrt{5}-\sqrt{3-\sqrt{29-12\sqrt{5}}}}\)
=\(\sqrt{\sqrt{5}-\sqrt{3-\sqrt{\left(2\sqrt{5}-3\right)^2}}}\)
=\(\sqrt{\sqrt{5}-\sqrt{3-2\sqrt{5}+3}}\)
làm giống câu a
3. a=\(\sqrt{3-\sqrt{5}}\left(3+\sqrt{5}\right)\left(\sqrt{10}-\sqrt{2}\right)\)
=\(\sqrt{3-\sqrt{5}}\left(3\sqrt{10}+5\sqrt{2}-3\sqrt{2}-\sqrt{10}\right)\)
=\(\sqrt{3-\sqrt{5}}\left(2\sqrt{10}+2\sqrt{2}\right)\)
=\(\sqrt{3-\sqrt{5}}.\sqrt{2}\left(2\sqrt{5}+2\right)\)
=\(\sqrt{6-2\sqrt{5}}\left(2\sqrt{5}+2\right)=\left(\sqrt{5}-1\right)\left(2\sqrt{5}+2\right)\)
=\(10-2\sqrt{5}+2\sqrt{5}-2=8\)
vậy a là số tự nhiên
Chứng minh rằng :
\(a,\sqrt{10}-\sqrt{2}=2.\sqrt{3-\sqrt{5}}\)b
\(b,\left(\sqrt{10}-\sqrt{2}\right)\left(3+\sqrt{5}\right)\left(3-\sqrt{5}\right)\) là một số tự nhiên
c CMR với n thuộc N thì \(\left(\sqrt{n+1}-\sqrt{n}\right)^2=\sqrt{\left(2n+1\right)^2-1}\)
CMR A=\(\sqrt[3]{7-\sqrt{50}}+\sqrt[3]{7+\sqrt{50}}\)là số tự nhiên
\(A^3=14+3\sqrt[3]{\left(7-\sqrt{50}\right)\left(7+\sqrt{50}\right)}\left(\sqrt[3]{7-\sqrt{50}}+\sqrt[3]{7+\sqrt{50}}\right)\)
\(A^3=14+3\sqrt[3]{49-50}.A\)\(\Leftrightarrow\)\(A^3=14-3A\)
\(\Leftrightarrow\)\(A^3+3A-14=0\)\(\Leftrightarrow\)\(A\left(A^2-4\right)+7\left(A-2\right)=0\)
\(\Leftrightarrow\)\(A\left(A-2\right)\left(A+2\right)+7\left(A-2\right)=0\)
\(\Leftrightarrow\)\(\left(A-2\right)\left(A^2+2A+7\right)=0\)
\(\Leftrightarrow\)\(A=2\) ( do \(A^2+2A+7=\left(A+1\right)^2+6>0\) )
Cho A =\(\frac{\sqrt{2}-\sqrt{1}}{2+1}+\frac{\sqrt{3}-\sqrt{2}}{3+2}+...+\frac{\sqrt{36}-\sqrt{35}}{36+35}\)
CMR; A<5/12
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)
CMR:\(A=\sqrt{2+\sqrt{2+\sqrt{2+...+\sqrt{2}}}}\)(vô số dấu căn) không phải là số tự nhiên
cho A=\(\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+....+\frac{1}{\sqrt{n^2}}\)
với n thuộc N , n>=2
cmr; A không phải là số tự nhiên
Biết rằng a là số tự nhiên không chính phương thì \(\sqrt{a}\)là số vô tỉ
Gỉai thích các tập hơp sau tập hợp nào là số hữu tỉ tập hợp nào không phải:
\(\frac{3}{\sqrt{7}-5}-\frac{3}{\sqrt{7}+5}\)
\(\frac{4}{2-\sqrt{3}}-\frac{4}{2+\sqrt{3}}\)
\(\frac{\sqrt{3}}{\sqrt{7}-2}-2\sqrt{7}\)
\(\frac{\sqrt{7}+5}{\sqrt{7}-5}+\frac{\sqrt{7}-5}{\sqrt{7}+5}\)
Thế muốn giải thích thì liệt kê đau đầu =(
\(\frac{3}{\sqrt{7}-5}-\frac{3}{\sqrt{7+5}}=\frac{-10}{9}\inℚ\)
\(\frac{\sqrt{7}+5}{\sqrt{7}-5}+\frac{\sqrt{7}-5}{\sqrt{7}+5}=12\inℚ\)
Đây là TH là số hữu tỉ còn lại.....
\(\frac{4}{2-\sqrt{3}}-\frac{4}{2+\sqrt{3}}=8\sqrt{3}\notinℚ\)
\(\frac{\sqrt{3}}{\sqrt{7}-2}-2\sqrt{7}=2-\sqrt{7}\notinℚ\)
Bài 1: CMR các biểu thức sau là một số nguyên
a)A=\(\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{7+4\sqrt{3}}}}}\)
b)\(B=\left(\sqrt{3}-1\right)\sqrt{6+2\sqrt{21}\sqrt{3-\sqrt{\sqrt{2}+\sqrt{12}+\sqrt{18}-\sqrt{128}}}}\)