hộ mình đi mấy bạn
tìm x
\(\frac{x+5}{2005}+\frac{x+6}{2004}+\frac{x+7}{2003}=-3\)
Tìm x: a, \(\frac{x-2004}{2003}+\frac{x-2003}{2004}+\frac{x-2005}{2004}=3+\frac{2005}{2003}\)\(+\frac{2004}{2005}\)
c) 22/5 + 51/9 + 11/4 + 3/5 + 1/3 + 1/4
= 22/5 +3/5 +51/9 + 1/3 +11/4+1/4
= (22/5 +3/5) +(51/9 + 3/9) +(11/4+1/4)
= 25/5 +54/9 +12/4
= 5 +6 +3
= 14
d) (1/6 + 1/10 + 1/15) : (1/6 + 1/10 - 1/15)
= (5/30 + 3/30 +2/30 ) :(5/30 +3/30 -2/30)
= 10/30 : 6/30
= 1/3 : 1/5
= 5/3
Tìm x biết : \(\frac{x+5}{2005}+\frac{x+6}{2004}+\frac{x+7}{2003}=-3\)
\(\frac{x+5}{2005}+1+\frac{x+6}{2004}+1+\frac{x+7}{2003}+1=0\)
<=> \(\frac{x+2010}{2005}+\frac{x+2010}{2004}+\frac{x+2010}{2003}=0\)
<=>\(\left(x+2010\right)\left(\frac{1}{2005}+\frac{1}{2004}+\frac{1}{2003}\right)=0\)
<=>x+2010=0
<=>x=-2010
Thái Hồ làm đúng rồi nhé Ngọc Vĩ . Bạn đó chuyển sang VT thành +3 rồi tách thành + 1 +1 +1 đó bạn. Bài của Ngọc Vĩ sai rồi
\(\frac{x+5}{2005}+\frac{x+6}{2004}+\frac{x+7}{2003}=-3\)
các bạn giúp mình với
\(\Leftrightarrow\frac{x+5}{2005}+1+\frac{x+6}{2004}+1+\frac{x+7}{2003}+1=0\)
\(\Leftrightarrow\frac{x+2010}{2005}+\frac{x+2010}{2004}+\frac{x+2010}{2003}=0\)
\(\Leftrightarrow\left(x+2010\right)\left(\frac{1}{2005}+\frac{1}{2004}+\frac{1}{2003}\right)=0\)
Vì \(\frac{1}{2005}+\frac{1}{2004}+\frac{1}{2003}\ne0\)
\(\Leftrightarrow x=-2010\)
\(\frac{x+1}{1974}+\frac{x+2}{1973}+\frac{x+3}{1972}=-3\)
\(\frac{x+5}{2005}+\frac{x+6}{2004}+\frac{x+7}{2003}=-3\)
TÌM X
\(\frac{x+1}{1974}+\frac{x+2}{1973}+\frac{x+3}{1972}=-3\)
\(\Rightarrow\left(\frac{x+1}{1974}+1\right)+\left(\frac{x+2}{1973}+1\right)+\left(\frac{x+3}{1972}+1\right)=0\)
\(\Rightarrow\frac{x+1+1974}{1974}+\frac{x+2+1973}{1973}+\frac{x+3+1972}{1972}=0\)
\(\Rightarrow\frac{x+1975}{1974}+\frac{x+1975}{1973}+\frac{x+1975}{1972}=0\)
\(\Rightarrow\left(x+1975\right)\frac{1}{1974}+\frac{1}{1973}+\frac{1}{1972}=0\)
Mà \(\frac{1}{1974}+\frac{1}{1973}+\frac{1}{1972}\ne0\)
\(\Rightarrow x+1975=0\)
\(\Rightarrow x=0+1975\)
\(\Rightarrow x=1975\)
Vậy \(x=1975\)
b) phần này làm tương tự phần a nha, chuyển -3 sang vế bên trái r cộng từng p.số vs 1 và sau đó nhóm tử số chung ra ngoài ^^
a) \(\left(\frac{2}{3}x-\frac{4}{9}\right).\left(\frac{1}{2}+\frac{-3}{7}:x\right)=0\)
b) \(\frac{x+5}{2005}+\frac{x+6}{2004}+\frac{x+7}{2003}=-3\)
a)\(\left(\frac{2}{3}x-\frac{4}{9}\right).\left(\frac{1}{2}+\frac{-3}{7}:x\right)=0\)
\(\frac{2}{3}x-\frac{4}{9}=0\)hoặc\(\frac{1}{2}+\frac{-3}{7}:x=0\)
\(\frac{2}{3}x=\frac{4}{9}\)hoặc\(-\frac{3}{7}:x=-\frac{1}{2}\)
\(x=\frac{4}{9}:\frac{2}{3}\)hoặc\(x=-\frac{3}{7}:\frac{-1}{2}\)
\(x=\frac{2}{3}\)hoặc\(x=\frac{6}{7}\)
giải phương trình sau :
\(\frac{x+1}{2008}+\frac{x+2}{2007}+\frac{x+3}{2006}=\frac{x+4}{2005}+\frac{x+5}{2004}+\frac{x+6}{2003}\)
dễ mà bn,cộng 1 vào mỗi biểu thức và trừ vế 2 là xong
\(\frac{x+1}{2008}+\frac{x+2}{2007}+\frac{x+3}{2006}=\frac{x+4}{2005}+\frac{x+5}{2004}+\frac{x+6}{2003}\)
\(\Leftrightarrow\frac{x+1}{2008}+\frac{x+2}{2007}+\frac{x+3}{2006}+3=\frac{x+4}{2005}+\frac{x+5}{2004}+\frac{x+6}{2003}+3\)
\(\Leftrightarrow\left(\frac{x+1}{2008}+1\right)+\left(\frac{x+2}{2007}+1\right)+\left(\frac{x+3}{2006}+1\right)=\left(\frac{x+4}{2005}+1\right)\)
\(+\left(\frac{x+5}{2004}+1\right)+\left(\frac{x+6}{2003}+1\right)\)
\(\Leftrightarrow\frac{x+2009}{2008}+\frac{x+2009}{2007}+\frac{x+2009}{2006}=\frac{x+2009}{2005}+\frac{x+2009}{2004}+\frac{x+2009}{2003}\)
\(\Leftrightarrow\frac{x+2009}{2008}+\frac{x+2009}{2007}+\frac{x+2009}{2006}-\frac{x+2009}{2005}-\frac{x+2009}{2004}-\frac{x+2009}{2003}=0\)
\(\Leftrightarrow\left(x+2009\right)\left(\frac{1}{2008}+\frac{1}{2007}+\frac{1}{2006}-\frac{1}{2005}-\frac{1}{2004}-\frac{1}{2003}\right)=0\)(1)
Vì \(\frac{1}{2008}+\frac{1}{2007}+\frac{1}{2006}-\frac{1}{2005}-\frac{1}{2004}-\frac{1}{2003}\ne0\)(2)
Từ (1) và (2) \(\Rightarrow x+2009=0\)\(\Rightarrow x=-2009\)
Vậy \(x=-2009\)
\(\frac{x+1}{2008}+\frac{x+2}{2007}+\frac{x+3}{2006}=\frac{x+4}{2005}+\frac{x+5}{2004}+\frac{x+6}{2003}\)
\(\Leftrightarrow\frac{x+1}{2008}+\frac{x+2}{2007}+\frac{x+3}{2006}+3=\frac{x+4}{2005}+\frac{x+5}{2004}+\frac{x+6}{2003}+3\)
\(\Leftrightarrow\left(\frac{x+1}{2008}+1\right)+\left(\frac{x+2}{2007}+1\right)+\left(\frac{x+3}{2007}+1\right)=\left(\frac{x+4}{2005}+1\right)+\left(\frac{x+5}{2004}+1\right)+\left(\frac{x+6}{2003}+1\right)\)
\(\Leftrightarrow\frac{x+2009}{2008}+\frac{x+2009}{2007}+\frac{x+2009}{2006}=\frac{x+2009}{2005}+\frac{x+2009}{2004}+\frac{x+2009}{2003}\)
\(\Rightarrow\left(x+2009\right)\left(\frac{1}{2008}+\frac{1}{2007}+\frac{1}{2006}\right)=\left(x+2009\right)\left(\frac{1}{2005}+\frac{2}{2004}+\frac{1}{2003}\right)\)
\(\Leftrightarrow\left(x+2009\right)\left(\frac{1}{2008}+\frac{1}{2007}+\frac{1}{2006}-\frac{1}{2005}-\frac{1}{2004}-\frac{1}{2003}\right)=0\)
\(\Rightarrow x+2009=0\)( Vì \(\frac{1}{2008}+\frac{1}{207}+\frac{1}{2006}-\frac{1}{2005}-\frac{1}{2004}-\frac{1}{2003}\ne0\))
=> x = -2009
\(\frac{x+6}{2001}+\frac{x+5}{2002}+\frac{x+4}{2003}=\frac{x+3}{2004}+\frac{x+2}{2005}\)+\(\frac{x+1}{2006}\)
Tìm x
\(\frac{x-5}{2000}+\frac{x-4}{2001}+\frac{x-3}{2002}=\frac{x-2}{2003}+\frac{x-1}{2004}+\frac{x}{2005}\)
Bạn chuyển về 1 vế sau đó trừ 1 vào mỗi phân thức ta được :
\(\left(x-2005\right)\left(\frac{1}{2000}+\frac{1}{2001}+\frac{1}{2002}-\frac{1}{2003}-\frac{1}{2004}-\frac{1}{2005}\right)=0\)
Vì biểu thức bên phải khác 0 nên : \(x-2005=0\)=> \(x=2005\)
\(\frac{x-5}{2000}+\frac{x-4}{2001}+\frac{x-3}{2002}=\frac{x-2}{2003}+\frac{x-1}{2004}+\frac{x}{2005}\)
\(\Leftrightarrow\frac{x-2005}{2000}+\frac{x-2005}{2001}+\frac{x-2005}{2002}=\frac{x-2005}{2003}+\frac{x-2005}{2004}+\frac{x-2005}{2005}\)
\(\Leftrightarrow\left(x-2005\right)\left(\frac{1}{2000}+\frac{1}{2001}+\frac{1}{2002}-\frac{1}{2003}-\frac{1}{2004}-\frac{1}{2005}\right)=0\)
<=> x - 2005 = 0
<=> x = 2005
Vậy ...............
Giải phương trình sau :
\(\frac{x^2-2008}{2007}+\:\frac{x^2-2007}{2006}+\frac{x^2-2006}{2005}=\:\frac{x^2-\:2005}{2004}+\:\frac{x^2-2004}{2003}+\:\frac{x^2-2003}{2002}\)
Ta có : \(\frac{x^2-2008}{2007}+\frac{x^2-2007}{2006}+\frac{x^2-2006}{2005}=\frac{x^2-2005}{2004}+\frac{x^2-2004}{2003}+\frac{x^2-2003}{2002}\)
=> \(\frac{x^2-2008}{2007}+1+\frac{x^2-2007}{2006}+1+\frac{x^2-2006}{2005}+1=\frac{x^2-2005}{2004}+1+\frac{x^2-2004}{2003}+1+\frac{x^2-2003}{2002}+1\)
=> \(\frac{x^2-2008}{2007}+\frac{2007}{2007}+\frac{x^2-2007}{2006}+\frac{2006}{2006}+\frac{x^2-2006}{2005}+\frac{2005}{2005}=\frac{x^2-2005}{2004}+\frac{2004}{2004}+\frac{x^2-2004}{2003}+\frac{2003}{2003}+\frac{x^2-2003}{2002}+\frac{2002}{2002}\)
=> \(\frac{x^2-1}{2007}+\frac{x^2-1}{2006}+\frac{x^2-1}{2005}=\frac{x^2-1}{2004}+\frac{x^2-1}{2003}+\frac{x^2-1}{2002}\)
=> \(\frac{x^2-1}{2007}+\frac{x^2-1}{2006}+\frac{x^2-1}{2005}-\frac{x^2-1}{2004}-\frac{x^2-1}{2003}-\frac{x^2-1}{2002}=0\)
=> \(\left(x^2-1\right)\left(\frac{1}{2007}+\frac{1}{2006}+\frac{1}{2005}-\frac{1}{2004}-\frac{1}{2003}-\frac{1}{2002}\right)=0\)
=> \(x^2-1=0\)
=> \(x^2=1\)
=> \(x=\pm1\)
Vậy phương trình có 2 nghiệm là x = 1, x = -1 .