A=\(\frac{x+1}{x-1}\)+\(\frac{x-1}{x+1}\)-\(\frac{3x+1}{x^2-1}\)
Rút gọn A
Cho biểu thức \(M=\left(\frac{x+2}{3x}+\frac{2}{x+1}-3\right):\frac{2-4x}{x+1}-\frac{3x-x^2+1}{3x}\)
A, Rút gọn bthuc M
B, tính gtri bthuc rút gọn của M tại x=6013
a) \(ĐKXĐ:\hept{\begin{cases}x\ne0\\x\ne-1\end{cases}}\)
\(M=\left(\frac{x+2}{3x}+\frac{2}{x+1}-3\right):\frac{2-4x}{x+1}-\frac{3x-x^2+1}{3x}\)
\(=\left[\frac{\left(x+2\right)\left(x+1\right)}{3x\left(x+1\right)}+\frac{6x}{3x\left(x+1\right)}-\frac{9x\left(x+1\right)}{3x\left(x+1\right)}\right].\frac{x+1}{2-4x}+\frac{x^2-3x-1}{3x}\)
\(=\left[\frac{x^2+3x+2}{3x\left(x+1\right)}+\frac{6x}{3x\left(x+1\right)}-\frac{9x^2+9x}{3x\left(x+1\right)}\right].\frac{x+1}{2-4x}+\frac{x^2-3x-1}{3x}\)
\(=\frac{x^2+3x+2+6x-9x^2-9x}{3x\left(x+1\right)}.\frac{x+1}{2-4x}+\frac{x^2-3x-1}{3x}\)
\(=\frac{2-8x^2}{3x}.\frac{1}{2\left(1-2x\right)}+\frac{x^2-3x-1}{3x}\)
\(=\frac{2\left(1-4x^2\right)}{3x}.\frac{1}{2\left(1-2x\right)}+\frac{x^2-3x-1}{3x}\)
\(=\frac{2\left(1-2x\right)\left(1+2x\right)}{3x}.\frac{1}{2\left(1-2x\right)}+\frac{x^2-3x-1}{3x}\)
\(=\frac{1+2x}{3x}+\frac{x^2-3x-1}{3x}\)
\(=\frac{1+2x+x^2-3x-1}{3x}=\frac{x^2-x}{3x}=\frac{x\left(x-1\right)}{3x}=\frac{x-1}{3}\)
b) Với \(x=6013\)( thỏa mãn ĐKXĐ )
Thay \(x=6013\)vào biểu thức ta được:
\(M=\frac{6013-1}{3}=\frac{6012}{3}=2004\)
1. Rút Gọn A = \(\frac{3m+\sqrt{9m}-3}{m+\sqrt{m}-2}-\frac{\sqrt{m}-2}{\sqrt{m}-1}+\frac{1}{\sqrt{m}+2}-1\)
2. Rút Gọn C = \(\left(\frac{1}{x+1}-\frac{3}{x^3+1}+\frac{3}{x^2-x+1}\right)\times\frac{3x^2-3x+3}{x^2+3x+2}-\frac{2x-2}{x^2+2x}\)
Cho \(A=\left(\frac{2x^2+2}{x^3-1}+\frac{x^2-x+1}{x^4+x^2+1}-\frac{x^3+1}{x^3-x^2+3x-3}\right):\frac{1}{x-1}\)
Rút gọn A
Rút gọn biểu thức A :
A = \((\frac{x+2}{3x}+\frac{2}{x+1}-3):\frac{2-4x}{x+1}-\frac{3x+1-x^2}{3x}\)
\(A=\left(\frac{x+2}{3x}+\frac{2}{x+1}-3\right):\frac{2-4x}{x+1}-\frac{3x+1-x^2}{3x}\)
\(=\left(\frac{x+2}{3x}:\frac{2-4x}{x+1}\right)+\left(\frac{2}{x+1}:\frac{2-4x}{x+1}\right)-\left(3:\frac{2-4x}{x+1}\right)-\frac{3x+1-x^2}{3x}\)
\(=\left(\frac{x+2}{3x}.\frac{x+1}{2-4x}\right)+\left(\frac{2}{x+1}.\frac{x+1}{2-4x}\right)-\left(3.\frac{x+1}{2-4x}\right)-\frac{3x+1-x^2}{3x}\)
\(=\frac{\left(x+2\right)\left(x+1\right)}{3x\left(2-4x\right)}+\frac{2}{2-4x}-\frac{3\left(x+1\right)}{2-4x}-\frac{3x+1-x^2}{3x}\)
\(=\frac{x^2+x+2x+2}{6x-12x^2}+\frac{2-3x-3}{2-4x}-\frac{3x+1-x^2}{3x}\)
\(=\frac{x^2+3x+2}{6x-12x^2}+\left(\frac{-1-3x}{2-4x}-\frac{3x+1-x^2}{3x}\right)\)
\(=\frac{x^2+3x+2}{6x-12x^2}+\left(\frac{3x\left(-1-3x\right)-\left(2-4x\right)\left(3x+1-x^2\right)}{3x\left(2-4x\right)}\right)\)
\(=\frac{x^2+3x+2}{6x-12x^2}+\left(\frac{\left(-3x-9x^2\right)-\left(6x+2-2x^2-12x^2-4x+4x^3\right)}{6x-12x^2}\right)\)
\(=\frac{x^2+3x+2}{6x-12x^2}+\frac{-3x-9x^2-6x-2+2x^2+12x^2+4x-4x^3}{6x-12x^2}\)
\(=\frac{x^2+3x+2}{6x-12x^2}+\frac{-5x+5x^2-2-4x^3}{6x-12x^2}\)
\(=\frac{x^2+3x+2-5x+5x^2-2-4x^3}{6x-12x^2}\)
\(=\frac{6x^2-4x^3-2x}{6x-12x^2}\)
\(=\frac{x\left(6x-4x^2-2\right)}{x\left(6-12x\right)}\)
\(=\frac{6x-4x^2-2}{6-12x}\)
Cảm ơn bạn đã giúp mình. Bạn làm đúng rồi nhưng bạn quên chưa rút gọn, kết quả đúng trong giải nó ghi là \(\frac{x-1}{3}\)
Rút gọn
A=\(\frac{1}{x^2+x}+\frac{1}{x^2+3x+2}+\frac{1}{x^2+5x+6}+\frac{1}{x^2+7x+12}+\frac{1}{x^2+9-10}\)
Rút gọn
\(A=\left(\frac{1}{3}+\frac{3}{x^2-3x}\right):\left(\frac{x^2}{27-3x^2}+\frac{1}{x+3}\right)\)
a. Rút gọn
Tìm x để A nhỏ hơn -1
c. Với giá trị nào của x thì A nhận giá trị nguyên
cho biểu thức \(A=\frac{x}{x+1}-\frac{3-3x}{x^2-x+1}+\frac{x+4}{x^3+1}\)
Rút gọn biểu thức A
\(A=\frac{\left[x\left(x^2-x+1\right)\right]-\left[\left(x+1\right)\left(3-3x\right)\right]+\left[x+4\right]}{x^3+1}\)
\(A=\frac{\left(x^3-x^2+x\right)+3\left(x^2-1\right)+\left(x+4\right)}{x^3+1}=\frac{x^3+2x^2+2x+1}{x^3+1}\)
\(A=\frac{\left(x^3+1\right)+2x\left(x+1\right)}{x^3+1}=1+\frac{2x}{x^2-x+1}\)
\(A=\frac{x}{x+1}-\frac{3-3x}{x^2-x+1}+\frac{x+4}{x^3+1}\)
\(A=\frac{x}{x+1}-\frac{3-3x}{x^2-x+1}+\frac{x+4}{\left(x+1\right)\left(x^2-x+1\right)}\)
\(A=\frac{x\left(x^2-x+1\right)-\left(3+3x\right)\left(x+1\right)+\left(x+4\right)}{\left(x+1\right)\left(x^2-x+1\right)}\)
\(A=\frac{x^3-x^2+x-9x-3-3x^2+x+4}{\left(x+1\right)\left(x^2-x+1\right)}\)
\(A=\frac{x^3-x^2-3x^2+x-9x+x+3+4}{x^3+1}\)
\(A=\frac{x^3+2x^2-4x+4}{\left(x+1\right)\left(x^2-x+1\right)}\)
C/m A>0
\(1+\frac{2x}{x^2-x+1}>0\)
x^2-x+1=(x-1/2)^2+3/4>3/4 ,moi x
neu x>=0 hien nhien A>1 tat nhien lon hon 0
xet x<0
can c/m !2x!<!x^2-x+1!
-2x<x^2-x+1
<=> x^2+x+1>0
<=> (x+1/2)^2+3/4>0 hien nhien dung
cho A = \(\left(\frac{1}{3}+\frac{3}{x^2-3x}\right):\left(\frac{x^2}{27-3x^2}+\frac{1}{x+3}\right)\)
a, rút gọn A
b, tìm x để A< -1
1, Cho biểu thức: A=\(\left(\frac{x+1}{x}-\frac{1}{1-x}-\frac{x^2-2}{x^2-x}\right):\frac{x^2+x}{x^2-2x+1}\)
a, Rút gọn A
b,Tính giá trị lớn nhất của A
2, Cho biểu thức: B=\(\left(\frac{x-1}{3x-1}-\frac{1}{3x+1}+\frac{8x}{9x^2-1}\right):\left(1-\frac{3x-2}{3x-1}\right)\)
a,Nêu điều kiện xác định và rút gọn B
b,Tính giá trị của x để biểu thức B=\(\frac{6}{5}\)
c,Tìm các giá trị của x để A<1
giúp mình với
a) Đk: x > 0 và x khác +-1
Ta có: A = \(\left(\frac{x+1}{x}-\frac{1}{1-x}-\frac{x^2-2}{x^2-x}\right):\frac{x^2+x}{x^2-2x+1}\)
A = \(\left[\frac{\left(x-1\right)\left(x+1\right)+x-x^2+2}{x\left(x-1\right)}\right]:\frac{x\left(x+1\right)}{\left(x-1\right)^2}\)
A = \(\frac{x^2-1+x-x^2+2}{x\left(x-1\right)}\cdot\frac{\left(x-1\right)^2}{x\left(x+1\right)}\)
A = \(\frac{x+1}{x}\cdot\frac{x-1}{x\left(x+1\right)}=\frac{x-1}{x^2}\)
b) Ta có: A = \(\frac{x-1}{x^2}=\frac{1}{x}-\frac{1}{x^2}=-\left(\frac{1}{x^2}-\frac{1}{x}+\frac{1}{4}\right)+\frac{1}{4}=-\left(\frac{1}{x}-\frac{1}{2}\right)^2+\frac{1}{4}\le\frac{1}{4}\forall x\)
Dấu "=" xảy ra <=> 1/x - 1/2 = 0 <=> x = 2 (tm)
Vậy MaxA = 1/4 <=> x = 2
giải jùm vs
Rút gọn Pthức:
A= \(\left(\frac{1}{x+1}-\frac{3}{x^3+1}+\frac{3}{x^2+x+1}\right)\frac{3x^2-3x+3}{\left(x+1\right)\left(x+2\right)}-\frac{2x-2}{x^2+2x}\)