Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
nguyen le duy hung
Xem chi tiết
Không Tên
11 tháng 7 2018 lúc 20:04

Bài 1:

a)  \(\frac{2}{\sqrt{3}-1}-\frac{2}{\sqrt{3}+1}\)

\(=\frac{2\left(\sqrt{3}+1\right)}{\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)}-\frac{2\left(\sqrt{3}-1\right)}{\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)}\)

\(=\frac{2\left(\sqrt{3}+1\right)}{2}-\frac{2\left(\sqrt{3}-1\right)}{2}\)

\(=\sqrt{3}+1-\left(\sqrt{3}-1\right)=2\)

b)   \(\frac{2}{5-\sqrt{3}}+\frac{3}{\sqrt{6}+\sqrt{3}}\)

\(=\frac{2\left(5+\sqrt{3}\right)}{\left(5-\sqrt{3}\right)\left(5+\sqrt{3}\right)}+\frac{3\left(\sqrt{6}-\sqrt{3}\right)}{\left(\sqrt{6}+\sqrt{3}\right)\left(\sqrt{6}-\sqrt{3}\right)}\)

\(=\frac{2\left(5+\sqrt{3}\right)}{2}+\frac{3\left(\sqrt{6}-\sqrt{3}\right)}{3}\)

\(=5+\sqrt{3}+\sqrt{6}-\sqrt{3}=5+\sqrt{6}\)

c)  ĐK:  \(a\ge0;a\ne1\)

  \(\left(1+\frac{a+\sqrt{a}}{1+\sqrt{a}}\right).\left(1-\frac{a-\sqrt{a}}{\sqrt{a}-1}\right)+a\)

\(=\left(1+\frac{\sqrt{a}\left(\sqrt{a}+1\right)}{1+\sqrt{a}}\right).\left(1-\frac{\sqrt{a}\left(\sqrt{a}-1\right)}{\sqrt{a}-1}\right)+a\)

\(=\left(1+\sqrt{a}\right)\left(1-\sqrt{a}\right)+a\)

\(=1-a+a=1\)

Nguyễn Thu Thủy
Xem chi tiết
Đặng Ngọc Quỳnh
25 tháng 9 2020 lúc 22:31

ĐKXĐ: \(-1\le x\le1\)

Ta có:  \(\sqrt{1+\sqrt{1-x^2}}=\frac{\sqrt{1+x+2\sqrt{1-x^2}+1-x}}{\sqrt{2}}=\frac{\sqrt{1+x}+\sqrt{1-x}}{\sqrt{2}}\)

\(\sqrt{\left(1+x\right)^3}-\sqrt{\left(1-x\right)^3}=\left(\sqrt{1+x}-\sqrt{1-x}\right)\left(2+\sqrt{1-x^2}\right)\)

\(\Rightarrow A=\frac{1}{\sqrt{2}}.\frac{\left(\sqrt{1+x}+\sqrt{1-x}\right)\left(\sqrt{1+x}-\sqrt{1-x}\right)\left(2+\sqrt{1-x^2}\right)}{2+\sqrt{1-x^2}}=\frac{1}{\sqrt{2x}}\)

Khách vãng lai đã xóa
nguyen thanh binh
Xem chi tiết
poke đại chiến
10 tháng 2 2019 lúc 12:43

cho S=1-3+32-33+...+398-399                                                                                                                                       

a. Chứng minh: S chia hêt cho 20

b. Rút gọn S, từ đó suy ra 3100 chia 4 dư 1

chịu

Cô gái thất thường (Ánh...
Xem chi tiết
Nguyễn Võ Thảo Vy
Xem chi tiết
your heart your love is...
Xem chi tiết
kim thủy
Xem chi tiết
Quỳnh Huỳnh
10 tháng 8 2015 lúc 16:29

Bạn Ngọc Vĩ sai chỗ nhân phân phối nhé. Kq là \(\frac{2\sqrt{x}}{\sqrt{x}-1}\)

Ngọc Vĩ
10 tháng 8 2015 lúc 15:22

ĐKXĐ: tự tìm nhoa

\(\left[\frac{2}{3\sqrt{x}}-\frac{2}{\sqrt{x}+1}.\frac{\sqrt{x}+1}{3\sqrt{x}}+2\left(\sqrt{x}-1\right)\right].\frac{\sqrt{x}}{\sqrt{x}-1}=\left(\frac{2}{3\sqrt{x}}-\frac{2}{3\sqrt{x}}+2\left(\sqrt{x}-1\right)\right).\frac{\sqrt{x}}{\sqrt{x}-1}=2\left(\sqrt{x}-1\right).\frac{\sqrt{x}}{\sqrt{x}-1}=2\sqrt{x}\)

Huỳnh Diệu Linh
Xem chi tiết
Love
Xem chi tiết
nguyên công quyên
Xem chi tiết
Minh Nguyen
2 tháng 3 2020 lúc 18:42

Câu 3 :

\(ĐKXĐ:x>0\)

 \(P=\left(\frac{2}{\sqrt{x}}+\frac{\sqrt{x}}{\sqrt{x}+2}\right):\frac{2\sqrt{x}}{x+2\sqrt{x}}\)

\(\Leftrightarrow P=\frac{2\sqrt{x}+4+x}{x+2\sqrt{x}}\cdot\frac{x+2\sqrt{x}}{2\sqrt{x}}\)

\(\Leftrightarrow P=\frac{2\sqrt{x}+4+x}{2\sqrt{x}}\)

b) Để P = 3

\(\Leftrightarrow\frac{2\sqrt{x}+4+x}{x+2\sqrt{x}}=3\)

\(\Leftrightarrow2\sqrt{x}+4+x=6\sqrt{x}\)

\(\Leftrightarrow x-4\sqrt{x}+4=0\)

\(\Leftrightarrow\left(\sqrt{x}-2\right)^2=0\)

\(\Leftrightarrow\sqrt{x}-2=0\)

\(\Leftrightarrow\sqrt{x}=2\)

\(\Leftrightarrow x=4\)(tm)

Vậy để \(P=3\Leftrightarrow x=4\)

Khách vãng lai đã xóa
Minh Nguyen
2 tháng 3 2020 lúc 18:57

Câu 1 : Hình như sai đề !! Mik sửa :

\(ĐKXĐ:\hept{\begin{cases}x\ge0\\x\ne4\end{cases}}\)

\(A=\left(\frac{x}{x\sqrt{x}-4\sqrt{x}}-\frac{6}{3\sqrt{x}-6}+\frac{1}{\sqrt{x}+2}\right):\left(\sqrt{x}-2+\frac{10-x}{\sqrt{x}+2}\right)\)

\(\Leftrightarrow A=\left(\frac{\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}-\frac{2}{\sqrt{x}-2}+\frac{1}{\sqrt{x}+2}\right):\left(\frac{x-4+10-x}{\sqrt{x}+2}\right)\)

\(\Leftrightarrow A=\frac{\sqrt{x}-2\sqrt{x}-4+\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}:\frac{6}{\sqrt{x}+2}\)

\(\Leftrightarrow A=\frac{-6\left(\sqrt{x}+2\right)}{6\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)

\(\Leftrightarrow A=-\frac{1}{\sqrt{x}-2}\)

b) Để A < 2

\(\Leftrightarrow-\frac{1}{\sqrt{x}-2}< 2\)

\(\Leftrightarrow-1< 2\sqrt{x}-4\)

\(\Leftrightarrow2\sqrt{x}>3\)

\(\Leftrightarrow\sqrt{x}>1,5\)

\(\Leftrightarrow x>2,25\)

Vậy để \(A< 2\Leftrightarrow x>2,25\)

Khách vãng lai đã xóa
Minh Nguyen
2 tháng 3 2020 lúc 19:11

Câu 2 :

\(ĐKXĐ:\hept{\begin{cases}x\ne\frac{4}{25}\\x\ne9\\x\ne1\end{cases}}\)

\(A=\frac{15\sqrt{x}-11}{x+2\sqrt{x}-3}+\frac{3\sqrt{x}-2}{1-\sqrt{x}}-\frac{2\sqrt{x}+3}{\sqrt{x}+3}\)

\(\Leftrightarrow A=\frac{15\sqrt{x}-11-\left(3\sqrt{x}-2\right)\left(\sqrt{x}+3\right)-\left(2\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)

\(\Leftrightarrow A=\frac{15\sqrt{x}-11-3x-7\sqrt{x}+6-2x-\sqrt{x}+3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)

\(\Leftrightarrow A=\frac{-5x+7\sqrt{x}-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)

\(\Leftrightarrow A=\frac{\left(2-5\sqrt{x}\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)

\(\Leftrightarrow A=\frac{2-5\sqrt{x}}{\sqrt{x}+3}\)

b) Mik quên mất cách chứng minh rồi :((

Chỉ biết : Dấu " = " xảy ra : \(\Leftrightarrow x=0\)

\(\)

Khách vãng lai đã xóa