Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn An
Xem chi tiết
Akai Haruma
14 tháng 10 2021 lúc 23:28

Lời giải:

$n^4+3n^3+4n^2+3n+1=(n+1)^2(n^2+n+1)$

Nếu đây là scp thì $n^2+n+1$ cũng phải là scp

Đặt $n^2+n+1=t^2$ với $t$ tự nhiên 

$\Leftrightarrow 4n^2+4n+4=(2t)^2$

$\Leftrightarrow (2n+1)^2+3=(2t)^2$

$\Leftrightarrow 3=(2t-2n-1)(2t+2n+1)$

$\Rightarrow 2t+2n+1=3; 2t-2n-1=1$

$\Rightarrow n=0$ (trái giả thiết)

Vậy có nghĩa là $n^2+n+1$ không là scp với mọi $n\in\mathbb{N}^*$

$\Rightarrow n^4+3n^3+4n^2+3n+1$ không là scp với mọi $n\in\mathbb{N}^*$

Ta có đpcm.

hocsinhngoan
Xem chi tiết
Nguyễn Lê Phước Thịnh
25 tháng 10 2023 lúc 22:30

\(B=n^2-6n+9\)

\(=n^2-2\cdot n\cdot3+3^2\)

\(=\left(n-3\right)^2\)

=>B là số chính phương

Bạn Của Nguyễn Liêu Hóa
Xem chi tiết
nguyễn thị kim oanh
Xem chi tiết
HD Film
23 tháng 7 2020 lúc 11:07

Ta có:

+) \(\left(2n^2+n+2\right)^2=4n^4+4n^3+9n^2+4n+4>4n^4+4n^3+6n^2+3n+2\)

     Giải thích: \(3n^2+n+2>0\forall n\inℤ\)

+)\(4n^4+4n^3+6n^2+3n+2>4n^4+4n^3+5n^2+2n+1=\left(2n^2+n+1\right)^2\)

     Giải thích: \(n^2+n+1>0\forall n\inℤ\)

Ta thấy \(4n^4+4n^3+6n^2+3n+2\)bị kẹp giữa 2 số chính phương liên tiếp nên không thể là số chính phương

Khách vãng lai đã xóa
nguyễn thị kim oanh
24 tháng 7 2020 lúc 20:06

làm sao bạn tìm ra hai bình phương kẹp A ở giữa thế bạn, chỉ mik với?

Khách vãng lai đã xóa
Cô Pê
Xem chi tiết
Trần Thị Thảo Nhung
Xem chi tiết
Monkey  D  Dragon
Xem chi tiết
Nguyễn Thị Huyền Linh
Xem chi tiết
Quốc Hưng
Xem chi tiết