Tìm x để biểu thức: \(x^2+\sqrt{x^4+\frac{1}{x^2}}\) đạt giá trị nhỏ nhất
Help me!!! T_T
Cho biểu thức:\(A=\frac{\sqrt{x+4\sqrt{x-4}}+\sqrt{x-4\sqrt{x-4}}}{\sqrt{\frac{16}{x^2}-\frac{8}{x}+1}}\)
1. Với giá trị nào của x thì biểu thức A xác định?
2.Tìm giá trị của x để A đạt giá trị nhỏ nhất.
3.Tìm các giá trị nguyên của x để A có giá trị nguyên.
Cho biểu thức M=\(\frac{x\sqrt{x}-3}{x-2\sqrt{x}-3}-\frac{2\left(\sqrt{x}-3\right)}{\sqrt{x}+1}+\frac{\sqrt{x}+3}{3-\sqrt{x}}\)
a) Rút gọn biểu thức M
b) Tìm giá trị của x để biểu thức M đạt giá trị nhỏ nhất
cho biểu thức P=\(\left(\frac{x+2}{\sqrt{x}+1}-\sqrt{x}\right):\left(\frac{\sqrt{x}-4}{1-x}-\frac{\sqrt{x}}{\sqrt{x}+1}\right)\)
tìm x để P đạt giá trị nhỏ nhất.
1. \(P=\frac{x\sqrt{x}-3}{x-2\sqrt{x}-3}-\frac{2\left(\sqrt{3}-3\right)}{\sqrt{x}+1}+\frac{\sqrt{3}+3}{3-\sqrt{3}}\)
a) Rút gọn P
b) Tính giá trị nhỏ nhất của P
c) Tính giá trị của P với \(x=14-6\sqrt{5}\)
2. Tìm giá trị nhỏ nhất của biểu thức \(P=x^2-x\sqrt{3}+1\)
3. Tìm số dương x để biểu thức \(Y=\frac{x}{\left(x+2011\right)^2}\)đạt giá trị lớn nhất
4. Cho \(Q=\frac{1}{x-\sqrt{x}+2}\)xác định x để Q đạt giá trị lớn nhất
2. \(P=x^2-x\sqrt{3}+1=\left(x^2-x\sqrt{3}+\frac{3}{4}\right)+\frac{1}{4}=\left(x-\frac{\sqrt{3}}{2}\right)^2+\frac{1}{4}\ge\frac{1}{4}\)
Dấu '=' xảy ra khi \(x=\frac{\sqrt{3}}{2}\)
Vây \(P_{min}=\frac{1}{4}\)khi \(x=\frac{\sqrt{3}}{2}\)
3. \(Y=\frac{x}{\left(x+2011\right)^2}\le\frac{x}{4x.2011}=\frac{1}{8044}\)
Dấu '=' xảy ra khi \(x=2011\)
Vây \(Y_{max}=\frac{1}{8044}\)khi \(x=2011\)
4. \(Q=\frac{1}{x-\sqrt{x}+2}=\frac{1}{\left(x-\sqrt{x}+\frac{1}{4}\right)+\frac{7}{4}}=\frac{1}{\left(\sqrt{x}-\frac{1}{2}\right)^2+\frac{7}{4}}\le\frac{4}{7}\)
Dấu '=' xảy ra khi \(x=\frac{1}{4}\)
Vậy \(Q_{max}=\frac{4}{7}\)khi \(x=\frac{1}{4}\)
Làm như thế nào ra \(\frac{x}{4x.2011}\)vậy bạn?
BĐT \(\left(x+y\right)^2\ge4xy\)nhe bạn
Tìm x để biểu thức \(A=\frac{x-\sqrt{4}x+5}{\sqrt{x}-2}\) với x > 2 đạt giá trị nhỏ nhất
Cho biểu thức P=\(\frac{\sqrt{x}}{\sqrt{x}-1}+\frac{\sqrt{x}-2}{\sqrt{x}-1}\)
a) Tìm điều kiện để P xác định và rút gọn P.
b) Tìm các giá trị nguyên của x để P đạt giá trị nguyên.
c)Tìm giá trị của x để P đạt GTNN, tìm giá trị nhỏ nhất đó.
\(P=\frac{\sqrt{x}}{\sqrt{x}-1}+\frac{\sqrt{x}-2}{\sqrt{x}-1}\)
ĐKXĐ : \(\hept{\begin{cases}x\ge0\\x\ne1\end{cases}}\)
\(=\frac{\sqrt{x}+\sqrt{x}-2}{\sqrt{x}-1}\)
\(=\frac{2\sqrt{x}-2}{\sqrt{x}-1}\)
\(=\frac{2\left(\sqrt{x}-1\right)}{\sqrt{x}-1}=2\)
=> Với mọi \(\hept{\begin{cases}x\ge0\\x\ne1\end{cases}}\)thì P = 2
Đề sai à --
kkk. thế mới hỏi chứ. đề đấy: đố giải được
Cho biểu thức: Q = \(\left(\frac{2x\sqrt{x}+x-\sqrt{x}}{x\sqrt{x}-1}-\frac{x+\sqrt{x}}{x-1}\right)\frac{x-1}{2x+\sqrt{x}-1}+\frac{\sqrt{x}}{2\sqrt{x}-1}\)với \(x\ge0,x\ne\frac{1}{4}v\text{à}x\ge1\)
1) Rút gon Q
2) Với giá trị nào của x thì biểu thức Q đạt giá trị nhỏ nhất. Tìm giá trị nhỏ nhất đó.
Giúp mik vs
cho biểu thức A=3x-17/4-x
tìm giá rị nguyên của x để A đạt giá trị nhỏ nhất .
tìm giá trị nhỏ nhất đó
đề thi hk 1 đó ạ T_T
Ta có A= \(\frac{3x-17}{4-x}=\frac{3x-12-5}{4-x}\)\(=\frac{3x-12}{4-x}-\frac{5}{4-x}=-3-\frac{5}{4-x}\)
=>A \(< -3\)
=> Để A đạt Min => \(\frac{5}{4-x}\) phải đạt Max => \(4-x\)phải đạt Min
có B=4-x \(\le\)4
(lại có đk : 4-x \(\ne\)0=> x\(\ne4;\)/ 4-x\(>\)0 ( do nếu 4-x <0 => A>-3 => chắc chắn không đạt Min)và \(x\ge0\)(do nếu x<0 => B>4 ( B không đạt Min)
=> \(0< 4-x\le4\) mà x là giá trị nguyên => B có giá trị nhỏ nhất = 1
=> x=3
khi x= 3 => A=-8
Sai thì bảo lại mình nhé
Cho biểu thức: \(P=\left(\frac{x-1}{x+3\sqrt{x}-4}-\frac{\sqrt{x}+1}{\sqrt{x}-1}\right):\frac{x+2\sqrt{x}+1}{x-1}+1\)
1 Rút gọn P và tìm giá trị nhỏ nhất của P.
2 Xác địch x nguyên để P đạt giá trị nguyên.