Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
nguyen thi mai huong
Xem chi tiết
I am Jxki
Xem chi tiết
Edogawa Conan
11 tháng 7 2019 lúc 21:08

a) Ta có: \(\left|x+\frac{3}{2}\right|\ge0\forall x\)

 Hay : P \(\ge\)\(\forall\)x

Dấu "=" xảy ra khi: \(x+\frac{3}{2}=0\) <=> \(x=-\frac{3}{2}\)

Vậy Pmin = 0 tại x  = -3/2

b) Ta có: \(\left|3-x\right|\ge0\forall x\)

=> \(\left|3-x\right|+\frac{2}{5}\ge\frac{2}{5}\forall x\)

hay P \(\ge\)2/5 \(\forall\)x

Dấu "=" xảy ra khi: 3 - x = 0 <=> x = 3

Vậy Pmin = 2/5 tại x = 3

Phủ Đổng Thiên Vương
11 tháng 7 2019 lúc 21:11

a)Có giá trị tuyệt đối của x+3/2 >=0 với mọi x

=> P>=0 với mọi x

P=0 khi x+3/2=0 <=> x=-3/2

Vậy P có giá trị nhỏ nhất là 0 khi x=-3/2

Phủ Đổng Thiên Vương
11 tháng 7 2019 lúc 21:13

b) có giá trị tuyệt đối của 3-x >=0 với mọi x

=> (giá trị tuyết đối của 3-x) + 2/5 >=2/5

=> P>=2/5

   P = 2/5 khi 3-x=0 <=> x=3

Vậy P có giá trị nhỏ nhất là 2/5 khi x=3

Mai Quốc Bình
Xem chi tiết
Đỗ Phương Thảo
Xem chi tiết
Nguyễn Hiền Linh
26 tháng 1 2020 lúc 9:51

câu 1 x phải là dấu lớn hơn hoặc bằng mới giải được

2. xét x^2- 6x + 10

= X^2 -6x +9 +1

=(x^2 -3 )^2 +1

Nhận xét ( x^2 - 3) ^2 luôn luôn lớn hơn hoặc bằng 0 với moi x thuộc R

=> ( x^2 -3)^2+1 luôn luôn lớn hơn hoặc bằng 1 với mọi x thuộc R

=> \(\frac{2018}{X^2-6x+10}\)luôn luôn bé hơn hoặc bằng 2018 với mọi x thuộc R ( 2018/1)

=> P luôn luôn bé hơn hoặc bằng 2018với mọi x thuộc R

Dấu " =" xảy ra khi ( \(\left(x-3\right)^2\)=0

=> x-3 = 0

=> x=3

Vậy giá tị lớn nhất của P là 1 đạt được khi x=3

Khách vãng lai đã xóa
Nhật Hòa
Xem chi tiết
Bẹp Linh
Xem chi tiết
Phạm Tuấn Đạt
8 tháng 1 2019 lúc 23:04

a,\(A=x^2-2x+\frac{1}{x-1}\)

\(A=x^2-2x+1-\frac{x-2}{x-1}\)

\(A=\left(x-1\right)^2+\frac{-\left(x-2\right)}{x-1}\ge\frac{-\left(x-2\right)}{x-1}\)

Do \(x-2>x-1\Rightarrow-\left(x-2\right)< x-1\)

Mà \(\frac{-\left(x-2\right)}{x-1}\ge-1\)

Vậy Min A = -1 <=> x = 1

Dương Nguyễn Ngọc Khánh
Xem chi tiết
Nguyễn Quang Tùng
6 tháng 2 2017 lúc 6:34

bài này ta có thể giải theo 2 cách 

ta có A = \(\frac{x^2-2x+2011}{x^2}\)

\(\frac{x^2}{x^2}\)\(\frac{2x}{x^2}\)\(\frac{2011}{x^2}\)

= 1 - \(\frac{2}{x}\)\(\frac{2011}{x^2}\)

đặt \(\frac{1}{x}\)= y ta có 

A= 1- 2y + 2011y^2 

cách 1 : 

A = 2011y^2 - 2y + 1 

= 2011 ( y^2 - \(\frac{2}{2011}y\)\(\frac{1}{2011}\)

= 2011( y^2 - 2.y.\(\frac{1}{2011}\)\(\frac{1}{2011^2}\)\(\frac{1}{2011^2}\) + \(\frac{1}{2011}\)

= 2011 \(\left(\left(y-\frac{1}{2011}\right)^2\right)+\frac{2010}{2011^2}\)

= 2011\(\left(y-\frac{1}{2011}\right)^2\)\(\frac{2010}{2011}\)

vì ( y - \(\frac{1}{2011}\)2>=0 

=> 2011\(\left(y-\frac{1}{2011}\right)^2\)\(\frac{2010}{2011}\)> = \(\frac{2010}{2011}\)

hay A >=\(\frac{2010}{2011}\)

cách 2  

A = 2011y^2 - 2y + 1 

= ( \(\sqrt{2011y^2}\)) - 2 . \(\sqrt{2011y}\)\(\frac{1}{\sqrt{2011}}\)\(\frac{1}{2011}\)\(\frac{2010}{2011}\)

\(\left(\sqrt{2011y}-\frac{1}{\sqrt{2011}}\right)^2\)\(\frac{2010}{2011}\)

vì \(\left(\sqrt{2011y}-\frac{1}{\sqrt{2011}}\right)^2\)> =0 

nên \(\left(\sqrt{2011y}-\frac{1}{\sqrt{2011}}\right)^2\)\(\frac{2010}{2011}\)>= \(\frac{2010}{2011}\)

hay A >= \(\frac{2010}{2011}\)

trần thanh huyền
Xem chi tiết
Edogawa Conan
29 tháng 7 2021 lúc 10:13

I) Đk: x > 0 và x \(\ne\)9

\(D=\left(\frac{x+3}{x-9}+\frac{1}{\sqrt{x}+3}\right):\frac{\sqrt{x}}{\sqrt{x}-3}\)

\(D=\frac{x+3+\sqrt{x}-3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\cdot\frac{\sqrt{x}-3}{\sqrt{x}}\)

\(D=\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}+3\right)}=\frac{\sqrt{x}+1}{\sqrt{x}+3}\)

=> \(\frac{1}{D}=\frac{\sqrt{x}+3}{\sqrt{x}+1}=\frac{\sqrt{x}+1+2}{\sqrt{x}+1}=1+\frac{2}{\sqrt{x}+1}\)

Để 1/D nguyên <=> \(\frac{2}{\sqrt{x}+1}\in Z\)

<=> \(2⋮\left(\sqrt{x}+1\right)\) <=> \(\sqrt{x}+1\inƯ\left(2\right)=\left\{1;-1;2;-2\right\}\)

Do \(x>0\) => \(\sqrt{x}+1>1\) => \(\sqrt{x}+1=2\)

<=> \(\sqrt{x}=1\) <=> x = 1 (tm)

Khách vãng lai đã xóa
Edogawa Conan
29 tháng 7 2021 lúc 10:22

\(E=\left(\frac{x+2}{x\sqrt{x}+1}-\frac{1}{\sqrt{x}+1}\right)\cdot\frac{4\sqrt{x}}{3}\)

\(E=\frac{x+2-x+\sqrt{x}-1}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}\cdot\frac{4\sqrt{x}}{3}\)

\(E=\frac{\sqrt{x}+1}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}\cdot\frac{4\sqrt{x}}{3}=\frac{4\sqrt{x}}{3\left(x-\sqrt{x}+1\right)}\)

b) Với x\(\ge\)0; ta có:

\(E=\frac{8}{9}\) <=> \(\frac{4\sqrt{x}}{3\left(x-\sqrt{x}+1\right)}=\frac{8}{9}\)

<=> \(3\sqrt{x}=2x-2\sqrt{x}+2\)

<=> \(2x-4\sqrt{x}-\sqrt{x}+2=0\)

<=> \(\left(2\sqrt{x}-1\right)\left(\sqrt{x}-2\right)=0\)

<=> \(\orbr{\begin{cases}x=\frac{1}{4}\left(tm\right)\\x=4\left(tm\right)\end{cases}}\)

e) Ta có: \(E=\frac{4\sqrt{x}}{3\left(x-\sqrt{x}+1\right)}\ge0\forall x\in R\) (vì \(x-\sqrt{x}+1=\left(\sqrt{x}-\frac{1}{2}\right)^2+\frac{3}{4}>0\forall x\))

Dấu "=" xảy ra<=> x = 0

Vậy MinE = 0 <=> x = 0

Lại có: \(\frac{1}{E}=\frac{3\left(x-\sqrt{x}+1\right)}{4\sqrt{x}}=\frac{3}{4}\left(\sqrt{x}-1+\frac{1}{\sqrt{x}}\right)\ge\frac{3}{4}\left(2\sqrt{\sqrt{x}\cdot\frac{1}{\sqrt{x}}}-1\right)\)(bđt cosi)

=> \(\frac{1}{E}\ge\frac{3}{2}.\left(2-1\right)=\frac{3}{2}\)=> \(E\le\frac{2}{3}\)

Dấu "=" xảy ra<=> \(\sqrt{x}=\frac{1}{\sqrt{x}}\) <=> x = 1

Vậy MaxE = 2/3 <=> x = 1

Khách vãng lai đã xóa
Lê Tài Bảo Châu
29 tháng 7 2021 lúc 10:30

Edogawa Conan

câu 1 x không nguyên đâu bạn nhé, nên làm theo cách bạn là sai đấy

Khách vãng lai đã xóa
yêu húa
Xem chi tiết
Nguyễn Linh Chi
12 tháng 7 2020 lúc 7:23

Với mọi 0 < x < 1 ta có: 

\(A=\frac{2}{1-x}+\frac{1}{x}=\frac{\left(\sqrt{2}\right)^2}{1-x}+\frac{1}{x}\ge\frac{\left(\sqrt{2}+1\right)^2}{1-x+x}=3+2\sqrt{2}\)

Dấu "=" xảy ra <=> \(\frac{\sqrt{2}}{1-x}=\frac{1}{x}=\sqrt{2}+1\Rightarrow x=\frac{1}{\sqrt{2}+1}=\sqrt{2}-1\)

Kết luận:...

Khách vãng lai đã xóa
Trần Hoàng Uyên Nhi
Xem chi tiết