Cho A(x)= -9x^6+9x^2-4x+8
Tìm x để M(x)=C(x)+x^2 có giá trị nhỏ nhất.Tìm giá trị đó
Cho A(x)= -9^6+9x^2-4x+8
Tìm nghiệm của A(x)
Tìm x để M(x)=A(x) + x^2có giá trị nhỏ nhất.tìm giá trị đó
M = (x-1)(x+2)(x+3)(x+6).Với giá trị nào của x thì M có giá trị nhỏ nhất.Tìm giá trị nhỏ nhất đó.
cho C(x)=-8+4x3-4x4
a) tìm nghiệm của C(x)
b)tìm x để đa thức M(x)=C(x)+x2 có giá trị nhỏ nhất và tìm giá trị nhỏ nhất đó
Cho:
A(x)= -1 + 5x6 - 6x2-5-9x6+4x4-3x2
B(x)= 2-5x2+3x4-4x2+3x+x4-4x6-7x
a) C(x)= A(x) - B(x)
b) Tìm nghiệm C(x)
c) Tìm x để M(x) = C(x) + x2 có GTNN(giá trị nhỏ nhất)
Mn xem nhanh nhanh cho mik chút nha ai đúng và nhanh nhất mik k cảm ơn mn nhìu
Mk mới học lớp 6 ko biết làm
thông cảm nhưng
Hok tốt=))
tìm giá trị của x và y để: S = /x+2\ + /2 x y-10 \ + 2014 đạt giá trị nhỏ nhất.Tìm giá trị nhỏ nhất đó
tìm giá trị nhỏ nhất của biểu thức \(A=\frac{4x^2+9x+18\sqrt{x}+9}{4x\sqrt{x}+4x}+\frac{4x\sqrt{x}+4x}{4x^2+9x+18\sqrt{x}+9},x>0\)
\(\frac{4x^2+9x+18\sqrt{x}+9}{4x\sqrt{x}+4\sqrt{x}}+\frac{4x\sqrt{x}+4\sqrt{x}}{4x^2+9x+18\sqrt{x}+9}-2=\frac{\left(-4x\sqrt{x}+4x^2+9x+22\sqrt{x}+9\right)^2}{\left(4x^2+9x+18\sqrt{x}+9\right)\left(4x\sqrt{x}+4\sqrt{x}\right)}\ge0\)
Đặt \(M=\frac{4x^2+9x+18\sqrt{x}+9}{4x\sqrt{x}+4x}\left(x>0\right)\Rightarrow M>0\)
Đặt \(y=\sqrt{x}>0\)ta có \(M=\frac{4x^2+9x+18\sqrt{x}+9}{4x\sqrt{x}+4x}=\frac{4y^4+9y^2+18y+9}{4y^3+4y^2}\)\(=\frac{3\left(4y^3+4y^2\right)+\left(4y^2-12y^3-3y^2+18y+9\right)}{4y^3+4y^2}=3+\frac{\left(2y^2-3y-3\right)^2}{4y^3+4y^2}\ge3\)
\(y>0\Rightarrow\hept{\begin{cases}4y^3+4y^2>0\\\left(2y^2-3y-3\right)^2\ge0\end{cases}\Rightarrow\frac{\left(2y-3y-3\right)^2}{4y^3+4y^2}\ge0}\)
Đẳng thức xảy ra \(\Leftrightarrow2y^2-3y-3=0\Leftrightarrow y=\frac{3+\sqrt{33}}{4}\left(y>0\right)\)
\(\Rightarrow x=\left(\frac{3+\sqrt{33}}{4}\right)^2=\frac{21+3\sqrt{33}}{8}\)
Khi đó \(A=M+\frac{1}{M}=\frac{8M}{9}+\left(\frac{M}{9}+\frac{1}{M}\right)\ge\frac{8\cdot3}{9}+2\sqrt{\frac{M}{9}\cdot\frac{1}{M}}=\frac{8}{3}+\frac{2}{3}=\frac{10}{3}\)
Đẳng thức xảy ra \(\Leftrightarrow\hept{\begin{cases}M=3\\\frac{M}{9}=\frac{1}{M}\end{cases}\Leftrightarrow M=3\Leftrightarrow x=\frac{21+3\sqrt{33}}{8}}\)
Vậy \(A_{min}=\frac{10}{3}\Leftrightarrow x=\frac{21+3\sqrt{33}}{8}\)
giúp mình với
cho biểu thức A=\(\frac{x^2-2x+2011}{x^2}\)với x>0.Tìm giá trị của x để A đạt giá trị nhỏ nhất.Tìm giá trị nhỏ nhất đó
mình đg cần gấp ạ!!
tìm giá trị của x và y để
S=|x+2|+|2y-10|+2016 đạt giá trị nhỏ nhất.Tìm giá trị nhỏ nhất đó
Vì |x-y| ≥0 với mọi x,y;|x+1|≥0 vs mọi x=>A≥2016 vs mọi x,y
=> A đạt giá trị nhỏ nhất khi:{
|x−y|=0 |
|x+1|=0 |
⇔{
x−y=0 |
x+1=0 |
⇔{
x=y |
x=−1 |
vậy với x=y=-1 thì S đạt giá trị nhỏ nhất là 2016
\(S=\left|x+2\right|+\left|2y-10\right|+2016\)
\(S\ge2016\forall x;y\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x+2=0\\2y-10=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-2\\y=5\end{cases}}}\)
Tìm giá trị nhỏ nhất của biểu thức \(A=\frac{4x^2+9x+18\sqrt{x}+9}{4x\sqrt{x}+4x}+\frac{4x\sqrt{x}+4x}{4x^2+9x+18\sqrt{x}+9}\) với x > 0
ta có: \(4x^2+9x+18\sqrt{x}+9=4x^2+9\left(\sqrt{x}+1\right)^2\),\(4x\sqrt{x}+4x=4x\left(\sqrt{x}+1\right)\)
Đặt \(a=x,b=\sqrt{x}+1\)ta có:
\(A=\frac{4a^2+9b^2}{4ab}+\frac{4ab}{4a^2+9b^2}=t+\frac{1}{t},t=\frac{4a^2+9b^2}{4ab}\)
có \(\frac{4a^2+9b^2}{4ab}=t\Rightarrow4a^2-t.4ab+9b^2=0\Leftrightarrow4.\left(\frac{a}{b}\right)^2-4t.\frac{a}{b}+9=0,\)do a khác 0.
Đặt \(\frac{a}{b}=y\Rightarrow4y^2-t.4y+9=0\), \(\Delta=16t^2-36\ge0\Leftrightarrow t\ge\frac{3}{2}\left(t>0\right)\)
xét \(f\left(t\right)=t+\frac{1}{t}\left(t\ge\frac{3}{2}\right)\)
lấy \(\frac{3}{2}< t_1< t_2\)
\(\Rightarrow f\left(t_1\right)-f\left(t_2\right)=\left(t_1-t_2\right)\left(\frac{t_1.t_2-1}{t_1.t_2}\right)< 0\)
suy ra với t càng tăng thì f(t) càng lớn vậy min \(f\left(t\right)=\frac{3}{2}+\frac{2}{3}=\frac{13}{6}\)
các em tự tìm x nhé.
bài này bạn áp dụng BĐT cô si cko 2 số dương là đc.
đáp án: Min A= 2
Phan Quỳnh Anh Cách của bạn không ổn đâu, với lại kết quả bạn chưa đúng ^^