Cho các số nguyên a,b,c thỏa mãn ab( a- b) + ca( c - a)= a+ b+ c. Cmr: a+ b+ c chia hết cho 27
Cho a,b,c là các số nguyên thỏa mãn:
( a - b)( b - c)( c - a) = a + b + c
CMR: a + b + c chia hết cho 27.
cho các số nguyên a,b,c thỏa mãn: A= a^2+b^2+ab+3(a+b)+2018 chia hết cho 5.CMR a-b chia hết cho 5.
Cho a,b,c là các số nguyên thỏa mãn ab+bc+ca+1 chia hết cho 5. Chứng minh rằng abc(a + b + c + abc) chia hết cho 5
Cho a,b,c là các số nguyên thỏa mãn ab+bc+ca+1 chia hết cho 5. Chứng minh rằng abc(a + b + c + abc) chia hết cho 5
Cho a,b,c là các số nguyên thỏa mãn ab+bc+ca+1 chia hết cho 5. Chứng minh rằng abc(a + b + c + abc) chia hết cho 5
Cho a,b,c là các số nguyên thỏa mãn ab+bc+ca+1 chia hết cho 5. Chứng minh rằng abc(a + b + c + abc) chia hết cho 5
Cho các số nguyên a, b, c thỏa mãn: a+b+c=(a-b)(b-c)(c-a). Chứng minh rằng a+b+c chia hết cho 27
Cho các số nguyên a, b, c, d thỏa mãn a3+b3=5(c3+7d3). CMR a+b+c+d chia hết cho 6
cho 3 số nguyên a,b,c thỏa mãn a+b+c=(a-b)(b-c)(c-a).Chứng minh rằng a+b+c chia hết cho 27
Giải như sau:
TH1: a, b, c có các số dư khác nhau khi chia cho 3
Suy ra a+b+c chia hết cho 3 trong khi đó (a-b)(b-c)(c-a) không chia hết cho 3 (do cả 3 số ta đã giả sừ không có 2 số nào có cùng số dư)
TH2: a, b, c đều có cùng số dư khi chia 3 suy ra mọi việc xong vì khi đó (a-b)(b-c)(c-a) chia hết cho 27 suy ra a+b+c chia hết cho 27 (dpcm).
Th3: a, b, c chì tồn tại duy nhất 1 cặp có cùng số dư chia cô 3 (vì nếu tồn tại 2 cặp thì 3 số sẽ cùng số dư quay về TH2)
(1) Suy ra a+b+c không chia hết cho 3 suy ra vô lý vì (a-b)(b-c)(c-a) có một số chia hết cho 3
(do (1)) Tóm lại chì có TH2 được nhận hay a+b+c chia hết cho 27