Chứng minh rằng nếu b chia hết cho a thì BCNN(a,b)=b
Người ta chứng minh được rằng:
a) Nếu a chia hết cho m và a chia hết cho n thì a chia hết cho BCNN của m và n
b) Nếu tích a.b chia hết cho c mà b và c là 2 số nguyên tố cùng nhau thì a chia hết cho c.
1) Tìm số tự nhiên a nhỏ nhất sao cho khi chia a cho 5, cho 7, cho 11 thì được số dư theo thứ tự là 3; 4; 6.
2) Chứng minh rằng nếu b chia hết cho a thì BCNN ( a; b ) = b
1. Tìm số tự nhiên a nhỏ nhất sao cho khi chia a cho 5, cho 7, cho 11 thì được số dư theo thứ tự là 3; 4; 6
2. Chứng minh rằng nếu b chia hết cho a thì BCNN ( a; b ) = b
Bài 1:
Ta có:
$a-3\vdots 5, a-4\vdots 7$
$\Rightarrow a-3-5.3\vdots 5, a-4-7.2\vdots 7$
$\Rightarrow a-18\vdots 5, a-18\vdots 7$
$\Rightarrow a-18=BC(5,7)$
$\Rightarrow a-18\vdots BCNN(5,7)\Rightarrow a-18\vdots 35$
$\Rightarrow a=35k+18$ với $k$ tự nhiên.
Lại có:
$a-6\vdots 11$
$\Rightarrow 35k+12\vdots 11$
$\Rightarrow 35k+12-33k\vdots 11$
$\Rightarrow 2k+12\vdots 11$
$\Rightarrow 2(k+6)\vdots 11\Rightarrow k+6\vdots 11$
$\Rightarrow k=11m-6$ với $m$ tự nhiên.
$a=35k+18=35(11m-6)+18=385m-192$
Để $a$ là số tự nhiên nhỏ nhất thì $m$ nhỏ nhất.
Mà $a\geq 0\Rightarrow 385m-192\geq 0\Rightarrow m>0$
$\Rightarrow$ m nhỏ nhất bằng 1
$\Rightarrow a_{\min}=385.1-192=193$
Chứng minh rằng :
a/ Biết a+b chia hết cho 7.Chứng minh rằng aba chia hết cho 7
b/ Biết a+b+c chia hết cho 7.Chứng minh rằng nếu abc chia hết cho 7 thì b-c chia hết cho 7
a/
\(\overline{aba}=101.a+10b=98a+3a+7b+3b=\)
\(=\left(98a+7b\right)+3\left(a+b\right)\)
\(98a+7b⋮7;\left(a+b\right)⋮7\Rightarrow3\left(a+b\right)⋮7\)
\(\Rightarrow\overline{abc}=\left(98a+7b\right)+3\left(a+b\right)⋮7\)
b/ xem lại đề bài
a)cho a, b là các số nguyên, chứng minh rằng nếu a chia cho 13 dư 2 và b chia cho 13 dư 3 thì a^2 + b^2 chia hết cho 13
b) Cho a,b là các số nguyên . Chứng minh rằng nếu a chia cho 19 dư 3 , b chia cho 19 dư 2 thì a^2 + b^2 + ab chia hết cho 19
c) chứng minh rằng nếu tổng của hai số nguyên chia hết cho 3 thì tổng các lập phương của chúng chia hết cho 3
Chứng minh rằng :( Chứng minh đầy đủ )
a, Nếu a chia hết cho m , b chia hết cho m thì ( a + b ) chia hết cho m
b, Nếu a chia hết cho m , b không chia hết cho m thì (a + b) không chia hết cho m
Chỉ có thể đưa ra ví dụ thôi chứ đây đã là kiến thức cơ bản r nhé bn.
Áp dụng công thức
- Tất cả các số trong 1 tổng đều chia hết cho cùng 1 số thì cả tổng đó sẽ chia hết cho số đó , chỉ cần 1 số ko chia hết thì cả tổng đó cũng sẽ ko chia hết
Lên anh Google ý
Anh Google bảo : tao sinh ra cho chúng mày ngắm ak
Chứng minh rằng :( Chứng minh đầy đủ )
a, Nếu a chia hết cho m , b chia hết cho m thì ( a + b ) chia hết cho m
b, Nếu a chia hết cho m , b không chia hết cho m thì (a + b) không chia hết cho m
a) Chứng minh rằng nếu a,b thuộc và a+5b chia hết cho 7 thì 10a + b cung chia het cho 7
b) tìm hai số tự nhiên a và b biết BCNN(a,b)=420: ƯCLN(a,b)=21 và a+21=b
(giup minh voi dang can gap)
a) Chứng minh rằng nếu a,b thuộc và a+5b chia hết cho 7 thì 10a + b cung chia het cho 7
b) tìm hai số tự nhiên a và b biết BCNN(a,b)=420: ƯCLN(a,b)=21 và a+21=b
(giup minh voi dang can gap)
ko cần biết làm đúng rồi duyệt cho bạn ấy đi
Cho a,b là các số nguyên:
a,chứng minh rằng nếu a chia 13 dư 2 và b chia 13 dư 3 thì a^2 + b^2 chia hết cho 13.
b, chứng minh rằng nếu a chia 19 dư 3, b chia cho 19 dư 2 thì a^2 + b^2 + ab chia hết cho 19
bài này thử là nhanh nhất (hi hi , mình đùa vui thôi chứ minh ko bít làm)
Câu a) a chia 13 dư 2 thì a2 chia 13 dư 4
b chia 13 dư 3 thì b2 chia 13 dư 9. Vậy a2 + b2 chia hết cho 13
Câu b) tương tự nhé bạn.