tìm 2 số tự nhiên a và b biết
a)BcNN(a,b)=300 và ƯcLN(a,b)=15
b)a.b =2940 và BcNN(a,b)=210
tìm hai số tự nhiên a,b(a>b)
1)a+b=224 và ƯCLN(a,b)=28
2)BCNN(a,b)=300 và ƯCLN(a,b)=15
3)a.b=2940 và BCNN(a,b)=210
Đề bài : Tìm hai số tự nhiên a , b biết (a>b)
1) a+b=224 và ƯCLN (a,b)= 28
2) BCNN(a,b)=300 và ƯCLN(a,b)=15
3)a.b=2940 và BCNN (a,b)=210
1.cho 2 số tự nhiên và b, ƯCLN (a,b)=7. Tìm a và b biết
a/a+b =56
b/a.b=490
c/ BCNN (a,b)=735
2.Tìm 2 số tự nhiên avaf b, biết rằng a+b=27, ƯCLN (a,b)=3 và BCNN (a,b)=60
3.Tìm 2n số tự nhiên a và b, biết rằng
a/a.b=2940 và BCNN (a,b)=210
b/a.b=160 và BCLN (a,b)=40
c/ a.b=8748 và ƯCLN (a,b)=27
d/a.b=864 và ƯCLN (a,b)=6
1.
\(ƯCLN\left(a,b\right)=7\)
\(\Rightarrow a,b\)chia hết cho 7
\(\Rightarrow a,b\in B\left(7\right)\)
\(B\left(7\right)=\left(0;7;14;21;28;35;42;49;56;63;70;77;84;91;98;105...\right)\)
a, vì a+b=56 \(\Rightarrow\)\(a\le56;b\le56\)
\(\Rightarrow a=56;b=0.a=0;b=56\)
\(a=7;b=49.a=49;b=7\)
\(a=14;b=42.a=42;b=14\)
\(a=21;b=35.a=35;b=21\)
\(a=b=28\)
b, a.b=490 \(\Rightarrow a< 490;b< 490\)
\(\Rightarrow\) \(a=7;b=70-a=70;b=7\)
\(a=14;b=35-a=35;b=14\)
c, BCNN (a,b) = 735
\(\Rightarrow a,b\inƯ\left(735\right)\)
\(Ư\left(735\right)=\left(1;3;5;7;15;21;35;49;105;147;245;735\right)\)
\(\Rightarrow\)\(a=7;b=105-a=105;b=7\)
2.
a+b=27\(\Rightarrow\)\(a\le27;b\le27\)
ƯCLN(a,b)=3
\(\Rightarrow a,b\in B\left(_{ }3\right)\in\left(0;3;6;9;12;15;18;21;24;27;30;...\right)\)
BCNN(a,b)=60
\(\Rightarrow a,b\inƯ\left(60\right)\in\left(1;2;3;4;5;6;10;12;15;20;60\right)\)
\(\Rightarrow\)\(a=12;b=15-a=15;b=12\)
Tìm 2 STN a,b biết(a>b)
1)a+b=224 và ƯCLN(a,b)=28
2)BCNN(a,b)=300 và ƯCLN(a,b)=15
3)a.b=2940 và BCNN(a,b)=210
lm nhu the nao?????
nho các bạn giai jum` đi
a) tìm hai số tự nhiên biết tổng của chúng là 162 và ƯCLN của chúng là 18
b) tìm hai số tự nhiên a,b biết rằng BCNN (a,b) = 300 ; ƯCLN (a,b) = 15
c) tìm hai số tự nhiên a và b biết tích của chúng bằng 2940 và BCNN của chúng là 210
a) tìm hai số tự nhiên biết tổng của chúng là 162 và ƯCLN của chúng là 18
b) tìm hai số tự nhiên a,b biết rằng BCNN (a,b) = 300 ; ƯCLN (a,b) = 15
c) tìm hai số tự nhiên a và b biết tích của chúng bằng 2940 và BCNN của chúng là 210
Tìm hai số tự nhiên a,b biêt stichs của chúng bằng 2940 và BCNN của chúng là 210.
Co biết với hai số tự nhiên a,b thì a.b = BCNN ( a,b) .ƯCLN (a,b)
mấy thánh toán đâu giải hộ mik nhé
Ta có : a.b = BCNN(a,b) . ƯCLN(a,b)
=> 2940 = 210 . ƯCLN(a,b)
=> ƯCLN(a,b) = 2940 : 210 = 14
=> a = 14k , b = 14l ( k,l nguyên tố cùng nhau )
Có : a . b = 2940 => 14k . 14l = 2940
196 . k.l = 2940
=> k.l = 15 => k,l \(\in\)Ư( 15)
Vì a,b là stn => k,l là stn => k,l \(\in\){ 1 ; 3 ; 5 ; 15}
Ta có bảng : ( không rõ là a>b hay b>a )
k | 1 | 15 | 3 | 5 |
l | 15 | 1 | 5 | 3 |
a=14k | 14 | 210 | 42 | 70 |
b=14l | 210 | 14 | 70 | 42 |
KL:...
Tìm hai số tự nhiên a và b biết BCNN(a,b)=210 và a.b=2940
Công thức: ƯCLN (a; b) = a.b : BCNN (a; b)
Bg
Ta có: BCNN (a; b) = 210 và a.b = 2940
=> ƯCLN (a; b) = 2940 : 210
=> ƯCLN (a; b) = 14
Đặt a = 14.x và b = 14.y (x, y \(\inℕ^∗\), x và y nguyên tố cùng nhau), ta có:
a.b = 14.x.14.y = 2940
=> 14.14.x.y = 2940
=> 196.x.y = 2940
=> x.y = 2940 : 196
=> x.y = 15 = 3.5 = 5.3 = 1.15 = 15.1
Với x = 3 và y = 5:
=> a = 14.3 = 42 và b = 14.5 = 70 (thoả mãn)
Với x = 5 và y = 3:
=> a = 14.5 = 70 và b = 14.3 = 42 (thoả mãn)
Với x = 1 và y = 15:
=> a = 14.1 = 14 và b = 14.15 = 210 (thoả mãn)
Với x = 15 và y = 1:
=> a = 14.15 = 210 và b = 14.1 = 14 (thoả mãn)
Vậy các cặp {x; y} thoả mãn đề bài là: {42; 70}; {70; 42}; {14; 210}; {210; 14}
a.b=2940 và BCNN (a,b)=210
BCNN(a.b)=300 ƯCLN (a,b)=15
nhanh nhất tym
Ta có \(a.b=BCNN\left(a,b\right).ƯCLN\left(a,b\right)\)
\(\RightarrowƯCLN\left(a,b\right)=2940:210=14\)
\(\Rightarrow a=14m;b=14n\)( với m,n khác 0 )
Thay \(a=14m;b=14n\)vào \(a.b=2940\)ta có
\(14m.14n=2940\)
\(\Rightarrow196.m.n=2940\)
\(\Rightarrow m.n=15\)
\(\Rightarrow m.n=1.15=3.5\)
+ Với m = 1 ; n = 15 \(\Rightarrow a=14;b=210\)
+ với m = 15 ; n =1 \(\Rightarrow a=210;b=14\)
+ Với m = 3 ; n = 5 \(\Rightarrow a=42;b=70\)
+ Với m = 5 ; n = 3 \(\Rightarrow a=70;b=42\)
\(ƯCLN\left(a,b\right)=15\Leftrightarrow a=15m;b=15n;\left(m,n\ne0\right)\)
\(a.b=BCNN\left(a,b\right).ƯCLN\left(a,b\right)=300.15=4500\)
\(\Rightarrow15m.15n=4500\)
\(\Rightarrow225m.n=4500\)
\(\Rightarrow m.n=20\)
\(\Rightarrow m.n=1.20=2.10=4.5\)
+ Với \(m=1;n=20\Rightarrow a=15;b=300\)
+ Với \(m=20;n=1\Rightarrow a=300;b=15\)
+ Với \(m=2;n=10\Rightarrow a=30;b=150\)
+ Với \(m=10;n=2\Rightarrow a=150;b=30\)
+ Với \(m=4;n=5\Rightarrow a=60;b=75\)
+ Với \(m=5;n=4\Rightarrow a=75;b=60\)
a) Ta có : ƯCLN(a,b) . BCNN(a,b) = a.b
=> ƯCLN(a,b) . 210 = 2940
=>ƯCLN(a,b) = 2940 : 210
=> ƯCLN(a,b) = 14
mà a . b = 2940 (1)
Lại có : ƯCLN(a,b) = 14
=> \(\hept{\begin{cases}a=14m\\b=14n\end{cases}}\left(m\ne n;m,n\inℕ\right)\)(2)
Thay (2) vào (1) ta có :
\(14m.14n=2940\)
\(\Rightarrow14.14.m.n=2940\)
\(\Rightarrow196.m.n=2940\)
\(\Rightarrow m.n=2940:196=15\)
\(\Rightarrow m.n=1.15=3.5\)
Lạp bảng xét các trường hợp :
\(m\) | \(3\) | \(5\) | \(1\) | \(15\) |
\(n\) | \(5\) | \(3\) | \(15\) | \(1\) |
\(a\) | \(42\) | \(60\) | \(14\) | \(210\) |
\(b\) | \(60\) | \(42\) | \(210\) | \(14\) |
Vậy các cặp (a,b) thỏa mãn là : \(\left(42;60\right);\left(60;42\right);\left(14;210\right);\left(210;42\right)\)