Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
VRCT_Ran Love Shinichi
Xem chi tiết
Minh Nguyễn Cao
3 tháng 9 2018 lúc 15:09

Áp dụng BĐT cô-si, ta được:

\(\hept{\begin{cases}\frac{a}{\sqrt{b}}+\sqrt{b}\ge2\sqrt{a}\\\frac{b}{\sqrt{a}}+\sqrt{a}\ge2\sqrt{b}\end{cases}}\)

=>  \(\sqrt{\frac{a^2}{b}}+\sqrt{\frac{b^2}{a}}+\sqrt{a}+\sqrt{b}\ge2\left(\sqrt{a}+\sqrt{b}\right)\)

=> \(\sqrt{\frac{a^2}{b}}+\sqrt{\frac{b^2}{a}}\ge\sqrt{a}+\sqrt{b}\) (đpcm)

Vậy....

LT丶Hằng㊰
26 tháng 11 2020 lúc 20:39

Biến đổi tương đương ta được :

\(\sqrt{\frac{a^2}{b}}+\sqrt{\frac{b^2}{a}}\ge\sqrt{a}+\sqrt{b}\)

\(\Leftrightarrow\sqrt{a}+\sqrt{b}\le\frac{\sqrt{a}^3+\sqrt{b}^3}{\sqrt{ab}}\)

\(\Leftrightarrow\sqrt{a}+\sqrt{b}\le\frac{\left(\sqrt{a}+\sqrt{b}\right)\left(a-\sqrt{ab}+b\right)}{\sqrt{ab}}\)

\(\Leftrightarrow\sqrt{ab}\le a-\sqrt{ab}+b\)

\(\Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\)( đúng với đk )

Khách vãng lai đã xóa
Hà Thị Thủy Ngân
Xem chi tiết
Trần Ngọc An Như
Xem chi tiết
Minh Thư Chanel
19 tháng 5 2018 lúc 21:55

xin lỗi chủ tus dù ko liên quan đến bài học cho mik hỏi môn văn của mik nghi CHT (chưa hoàn thành) mà vẫn hs tiên tiến ạ ?

Võ Phương Diễm
Xem chi tiết
Laura
16 tháng 6 2019 lúc 18:45

 Đây là theo t nghĩ thôi nhá.Sai thì thôi nha.

a)Gọi căn a = x

Suy ra a= x2

Mà x>1 nên x là số nguyên dương 

=>x2>x

Hay a>căn a

Hok tốt

Nguyễn Duyên
16 tháng 6 2019 lúc 18:55

a)\(a>1\Leftrightarrow a^2>a\Leftrightarrow a^2>\left(\sqrt{a}\right)^2\Leftrightarrow a>\sqrt{a}\)

b\(a< 1\Leftrightarrow a^2< a\Leftrightarrow a^2< \left(\sqrt{a}\right)^2\Leftrightarrow a< \sqrt{a}\)

Nguyễn Đức Duy
Xem chi tiết
hang pham
Xem chi tiết
Tớ Đông Đặc ATSM
3 tháng 9 2018 lúc 16:51

ta có :\(\sqrt{a^2+b^2}>\sqrt[3]{a^3+b^3}\)

\(\Leftrightarrow\left(a^2+b^2\right)\left(\sqrt{a^2+b^2}\right)>\left(\sqrt[3]{a^3+b^3}\right)^3\)

\(\Leftrightarrow\left(a^2+b^2\right)\left(\sqrt{a^2+b^2}\right)>a^3+b^3\)

\(\Leftrightarrow\left(a^2+b^2\right)^2.\left(\sqrt{a^2+b^2}\right)^2>\left(a^3+b^3\right)^2\)

\(\Leftrightarrow\left(a^4+2a^2b^2+b^4\right)\left(a^2+b^2\right)>\)\(a^6+2a^3b^3+b^6\)

( sau đó nhân phá ngoặc và rút gọn)

\(\Leftrightarrow3a^2b^4+3a^4b^2-2a^3b^3>0\) 

\(\Leftrightarrow a^2b^2.\left(3a^2+3b^2-2ab\right)>0\)

\(\Leftrightarrow a^2b^2.\left(a^2-2ab+b^2+2.\left(a^2+b^2\right)\right)>0\)

\(\Leftrightarrow a^2b^2.\left(\left(a-b\right)^2+2\left(a^2+b^2\right)\right)>0\)(luôn đúng) => đpcm 

Nguyễn Ngọc Huyền
Xem chi tiết
Kim Khánh Linh
Xem chi tiết
Nguyễn Thu Thủy
Xem chi tiết
Nguyễn Ngọc Khanh (Team...
3 tháng 10 2020 lúc 23:10

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\Rightarrow ab+bc+ca=0\Rightarrow\left(a+c\right)\left(b+c\right)=c^2\)

Vì \(a,b>0\)mà \(\frac{1}{c}=-\left(\frac{1}{a}+\frac{1}{b}\right)< 0\)nên \(c< 0\Rightarrow\sqrt{\left(a+c\right)\left(b+c\right)}=-c\)

\(\Rightarrow2c+2\sqrt{\left(a+c\right)\left(b+c\right)}=0\Rightarrow\left(a+c\right)+2\sqrt{\left(a+c\right)\left(b+c\right)}+\left(b+c\right)=a+b\)

\(\Rightarrow\left(\sqrt{a+c}+\sqrt{b+c}\right)^2=a+b\)---> 2 vế đều dương nên ta lấy căn 2 vế:

\(\sqrt{a+c}+\sqrt{b+c}=\sqrt{a+b}\)

Khách vãng lai đã xóa