tìm x,y,z biết x/5 =y/6=z/7 và 4x=3y
Giúp mình với??:(
Tìm x; y; z biết :
1) x/2 = y/3 ; y/4 = z/5 và x – y + z = 10
2) 4x = 3y ; 7y = 5z và 2x + 3y - z= 136
3) x-3/5 = y-5/1 = z+3/7 và 3x + 5y - 7z = 100
1) \(\Rightarrow\dfrac{x}{8}=\dfrac{y}{12}=\dfrac{z}{15}\)
Áp dụng t/c dtsbn:
\(\dfrac{x}{8}=\dfrac{y}{12}=\dfrac{z}{15}=\dfrac{x-y+z}{8-12+15}=\dfrac{10}{11}\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{8}=\dfrac{10}{11}\\\dfrac{y}{12}=\dfrac{10}{11}\\\dfrac{z}{15}=\dfrac{10}{11}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{80}{11}\\y=\dfrac{120}{11}\\z=\dfrac{150}{11}\end{matrix}\right.\)
2) \(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{3}=\dfrac{y}{4}\\\dfrac{y}{5}=\dfrac{z}{7}\end{matrix}\right.\) \(\Rightarrow\dfrac{x}{15}=\dfrac{y}{20}=\dfrac{z}{28}\)
Áp dụng t/c dtsbn:
\(\dfrac{x}{15}=\dfrac{y}{20}=\dfrac{z}{28}=\dfrac{2x}{30}=\dfrac{3y}{60}=\dfrac{2x+3y-z}{30+60-28}=\dfrac{136}{62}=\dfrac{68}{31}\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{15}=\dfrac{68}{31}\\\dfrac{y}{20}=\dfrac{68}{31}\\\dfrac{z}{28}=\dfrac{68}{31}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{1020}{31}\\y=\dfrac{1360}{31}\\z=\dfrac{1904}{31}\end{matrix}\right.\)
3) \(\Rightarrow\dfrac{3x-9}{15}=\dfrac{5y-25}{5}=\dfrac{7z+21}{49}\)
Áp dụng t/c dtsbn:
\(\dfrac{3x-9}{15}=\dfrac{5y-25}{5}=\dfrac{7z+21}{49}=\dfrac{3x+5y-7z-9-25-21}{15+5-49}=-\dfrac{45}{29}\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{3x-9}{15}=-\dfrac{45}{29}\\\dfrac{5y-25}{5}=-\dfrac{45}{29}\\\dfrac{7z+21}{49}=-\dfrac{45}{29}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=-\dfrac{138}{29}\\y=\dfrac{100}{29}\\z=-\dfrac{402}{29}\end{matrix}\right.\)
Tìm các số x, y, z biết rằng:
a) x - 2/ x - 1 = x + 4/ x + 7
b) 4x = 3y; 7y = 5z và 2x - 3y + z= 6
c) 10/ 5 - x = 6/ y - 9 = 14/ z - 21 và xyz = 6720
Giúp với! Thanks
a) Vì x-2/x-1 = x+4/x+7 nên: (x-2)(x+7) = (x+4)(x-1)
=> x^2 - 2x + 7x - 14 = x^2 + 4x - x - 4
=> 5x - 14 = 3x - 4
=> 5x - 3x = -4 + 14
=> 2x = 10
=> x = 5
Vậy x = 5
b) Ta có:
+) 4x = 3y => x/3 = y/4 => x/15 = y/20 (*)
+) 7y = 5z => y/5 = z/7 => y/20 = z/28 (**)
Từ (*) và(**) Suy ra x/15 = y/20 = z/28
Áp dunhj tính chất dãy tỉ số bằng nhau và 2x - 3y +z = 6 ta có:
x/15 = y/20 = z/28 = (2x-3y+z) / (2.15-3.20+28) = 6/-2 = -3
Do đó:
+) x/15 = -3 => x = -3.15 = -45
+) y/20 = -3 => y = -3.20 = -60
+) z/28 = -3 => z = -3.28 = -84
Vậy ...
a) Tìm x,y biết x+4/7+y= 4/7 và x+y=22
b) x/3=y/4 và y/5=z/6. Tính M= 2x+3y+4x/3x+4y+5z
Tìm x, y, z biết:
a) x/-4=y/6=z/7 và z-x=12
b) x/2=y/5=z/-6 và 2x-3y+z=34
b) Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{2}=\frac{y}{5}=\frac{z}{-6}=\frac{2x-3y+z}{2.2-3.5+\left(-6\right)}=\frac{34}{-17}=-\frac{34}{17}=-2\)
\(\frac{x}{2}=-2\Rightarrow x=\left(-2\right).2=-4\)
\(\frac{y}{5}=-2\Rightarrow y=\left(-2\right).5=-10\)
\(\frac{z}{-6}=-2\Rightarrow z=\left(-2\right).\left(-6\right)=12\)
Vậy x=-4 ; y=-10 và z=12
a) \(\frac{x}{-4}=\frac{y}{6}=\frac{z}{7}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{-4}=\frac{z}{7}=\frac{y}{6}\Rightarrow\frac{z-x}{7-\left(-4\right)}=\frac{12}{11}\)
\(\frac{x}{-4}=\frac{12}{11}\Rightarrow x=-\frac{48}{11}\)
\(\frac{z}{7}=\frac{12}{11}\Rightarrow z=\frac{84}{11}\)
\(\frac{y}{6}=\frac{12}{11}\Rightarrow y=\frac{72}{11}\)
b) \(\frac{x}{2}=\frac{y}{5}=\frac{z}{-6}\Rightarrow\frac{2x}{4}=\frac{3y}{15}=\frac{z}{-6}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{2x}{4}=\frac{3y}{15}=\frac{z}{-6}=\frac{2x-3y+z}{4-15-6}=\frac{34}{-17}=-2\)
\(\frac{2x}{4}=-2\Rightarrow2x=-8\Rightarrow x=-4\)
\(\frac{3y}{15}=-2\Rightarrow3y=-30\Rightarrow y=-10\)
\(\frac{z}{-6}=-2\Rightarrow z=12\)
a)Áp dụng tính chất dãy tỉ số bằng nhau: \(\frac{x}{-4}=\frac{y}{6}=\frac{z}{7}=\frac{z-x}{7-\left(-4\right)}=\frac{12}{11}\)
=>\(x=\frac{12}{11}.\left(-4\right)=-\frac{48}{11};y=\frac{12}{11}.6=\frac{72}{11};z=\frac{12}{11}.7=\frac{84}{11}\)
Vậy ...
Tìm x,y biết :
6) 3x=4y và 2x + 3y = 7
7) \(\dfrac{x}{5}=\dfrac{y}{6}=\dfrac{z}{7}\) và x-y+z=36
8) \(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{6}\) và 3x-2y+2z = 24
7) vì \(\dfrac{x}{5}\)=\(\dfrac{y}{6}\)=\(\dfrac{z}{7}\)và x-y+z=36
Nên theo tính chất của dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{5}\)=\(\dfrac{y}{6}\)=\(\dfrac{z}{7}\)=\(\dfrac{x-y+z}{5-6+7}\)=\(\dfrac{36}{6}\)=6
\(\Rightarrow\)x=6.5=30
y=6.6=36
z=6.7=42
vậy x=30,y=36,z=42
TÌM X, Y BIẾT :
1) x/2=y=z/3 và 2x-3y+4z=(-24)
2) 2x=3y và x^2+y^2=52
3) 5x=2y và x^3=y^3=133
4) -2x=3y và x^2*y^3=72
5) x/5=y/-6=z/7 và y-z=35
6) x+1/3=y+2/4=z+3/5 và x+y+z=18
7) x/2=y/3, y/2=z/5 và x+y+z=50
x254n3jsm3,s3333
a, tìm x,y,z biết 2x=3y;4y=5z;và 4x-3y+5z=7
b,tìm x,y thuộc Z biết:xy+2x-y=7
a,Ta có : \(2x=3y\Rightarrow\frac{x}{3}=\frac{y}{2}\Rightarrow\frac{x}{15}=\frac{y}{10}\)
\(4y=5z\Rightarrow\frac{y}{5}=\frac{z}{4}\Rightarrow\frac{y}{10}=\frac{z}{8}\)
Suy ra :\(\frac{x}{15}=\frac{y}{10}=\frac{z}{8}=k\Rightarrow x-15k;y=10k;z=8k\)
Ta có : \(4(15k)-3(10k)+5(8k)=7\)
\(\Rightarrow60k-30k+40k=7\)
\(\Rightarrow70k=7\). Suy ra \(k=\frac{1}{10}\)
Ta có : \(x=\frac{1}{10}\cdot15=\frac{3}{2}\)
\(y=\frac{1}{10}\cdot10=1\)
Mình chỉ giải có chừng này thôi
Câu b mk làm sau
\(xy+2x-y=7\)
\(xy+2x=7+y\)
\(x\left(y+2\right)=7+y\)
\(x=\frac{7+y}{y+2}\)
Bài 3 : a) Tìm x,y,z biết :
2x = 3y ; 4y = 5z và 4x - 3y + 5z = 7
b) x^3 phần 8 = y ^3 phần 64 = z^3 phần 216 và x^2 +y^2 + z^2 = 14
Bài 4 : Cho 3 số x,y,z khác 0 thỏa mãn :
y + z - x phần x = z + x - y phần y = x + y - z phần z hãy tính giá trị biểu thức :
C = ( 1 + y phần x ) ( 1 + y phần z ) ( 1 + z phần x )
Bài 5 : Tìm x,y,z biết : 2x = 3y = 5z và | x - 2y | = 5
Gợi ý nhá
Bài 3: câu 1: làm tương tự như câu hỏi lần trước bạn gửi.
b) Bạn chỉ cần cho tử và mẫu mũ 3 lên. theé là dễ r
\(\frac{x^3}{8}=\frac{y^3}{64}=\frac{z^3}{216}\Rightarrow=\frac{x}{2}=\frac{y}{4}=\frac{z}{6}\Rightarrow=\frac{x^2}{4}=\frac{y^2}{16}=\frac{z^2}{36}\)
áp dụng t/c dãy tỉ số bằng nhau ta có:
\(\frac{x^2}{4}=\frac{y^2}{16}=\frac{z^2}{36}=\frac{x^2+y^2+z^2}{4+16+36}=\frac{14}{56}=\frac{1}{4}\)
tự tính tiếp =)
Tìm x, y, z. Biết (4x-3y) /5 =(5y-4z) /6=(4z-4x-2y) /7 và x+y+z=36
\(\dfrac{4x-3y}{5}=\dfrac{5y-4z}{6}=\dfrac{-4x-2y+4z}{7}=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{4x-3y}{5}=0\Leftrightarrow x=\dfrac{3y}{4}\\\dfrac{5y-4z}{6}=0\Leftrightarrow z=\dfrac{5y}{4}\end{matrix}\right.\)
Ta có \(x+y+z=36\)
\(\Leftrightarrow\dfrac{3y}{4}+y+\dfrac{5y}{4}=36\)
\(\Rightarrow y=12\)
\(\Rightarrow\left\{{}\begin{matrix}x=9\\z=15\end{matrix}\right.\)