Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lưu Ngọc Thái Sơn
Xem chi tiết
Minh Trác
Xem chi tiết
Sally Nguyễn
Xem chi tiết
Huy Hoang
25 tháng 8 2020 lúc 14:50

B F C O D A E

Vì tam giác ABC vuông tại A nên tâm đường tròn ngoại tiếp tam giác ABC là trung điểm của cạnh huyền BC.

Ta có: BC = 2R

Giả sử đường tròn (O) tiếp với AB tại D, AC tại E và BC tại F

Theo kết quả câu a) bài 58, ta có ADOE là hình vuông.

Suy ra: AD = AE = EO = OD = r

Theo tính chất hai tiếp tuyến cắt nhau ta có:

AD = AE

BD = BF

CE = CF

Ta có: 2R + 2r = BF + FC + AD + AE

= ( BD + AD ) + ( AE + CE )

= AB + AC

Vậy AB = AC = 2 ( R + r )

Khách vãng lai đã xóa
Huy Hoang
25 tháng 8 2020 lúc 14:52

Nguồn : sachbaitap

Khách vãng lai đã xóa
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
20 tháng 10 2018 lúc 6:53

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Vì tam giác ABC vuông tại A nên tâm đường tròn ngoại tiếp tam giác ABC là trung điểm của cạnh huyền BC.

Ta có: BC = 2R

Giả sử đường tròn (O) tiếp với AB tại D, AC tại E và BC tại F

Theo kết quả câu a) bài 58, ta có ADOE là hình vuông.

Suy ra: AD = AE = EO = OD = r

Theo tính chất hai tiếp tuyến cắt nhau ta có:

AD = AE

BD = BF

CE = CF

Ta có: 2R + 2r = BF + FC + AD + AE

= (BD + AD) + (AE + CE)

= AB + AC

Vậy AB = AC = 2(R + r)

Xem chi tiết

a) áp dụng ct b=2RsinB ta có 2R(sinB+sinC)=2(r+R) 
chia cả 2 cho 2R ta được sinB+sinC=1+r/R 
mà ta có hệ thức cosa+cosb+cosc=1+r/R (cái này nếu bạn ko biết thì hãy tự cm nhé ,dễ lắm chỉ cần dùng lượng giác một cách khéo là đc thui) 
áp dụng vào bài với chú ý Â=90 thì ta có sinb+sinc=cosb+cosc.điều này hiển nhiên đúng với tam giác vuông tại A 
b) ta có S=pr. từ câu trên ta có a+b+c=2(R+r+RsinA).sina đã biết ,từ đó ta có kết quả 
c)gọi o là tâm ngoại tiếp thì o là trung điểm BC, i là tâm nội tiếp từ i bạn hạ 3 bán kính nội tiếp. ở đây mình hạ bán kính với cạnh BC là IE bạn có tính được BE ko (dễ lắm) với ct S ở trên bạn tính dược r chú ý IOE là tam giác vuông ở E áp dụng pitago là được. 
đây là cách giải khác sau khi mình hiểu trình độ của bạn 
a) cm ct S=pr.từ tâm i bạn hạ ie ứng với bc, ì ứng vớiab ,ih ứng với ac .đặt be=z .ah=x,hc=y ta có x+y=b ,y+z=a,z+x=c.từ đó tính được x.y.z .với chú ý Sabc=2Sbie+2Sahi+2Sihc.ta có ct trên 
Từ đó ta có S=pr=bc/c >r=2bc/a+b+c. 
(r+R)2=a+r=2bc+a2+ab+ac/a+b+c.chú ý a2=b2+c2 ta có kết quả câu a 
câu b.c thì với gợi ý trên bạn cũng có thể tự làm

a) áp dụng ct b=2RsinB ta có 2R(sinB+sinC)=2(r+R) 
chia cả 2 cho 2R ta được sinB+sinC=1+r/R 
mà ta có hệ thức cosa+cosb+cosc=1+r/R (cái này nếu bạn ko biết thì hãy tự cm nhé ,dễ lắm chỉ cần dùng lượng giác một cách khéo là đc thui) 
áp dụng vào bài với chú ý Â=90 thì ta có sinb+sinc=cosb+cosc.điều này hiển nhiên đúng với tam giác vuông tại A 
b) ta có S=pr. từ câu trên ta có a+b+c=2(R+r+RsinA).sina đã biết ,từ đó ta có kết quả 
c)gọi o là tâm ngoại tiếp thì o là trung điểm BC, i là tâm nội tiếp từ i bạn hạ 3 bán kính nội tiếp. ở đây mình hạ bán kính với cạnh BC là IE bạn có tính được BE ko (dễ lắm) với ct S ở trên bạn tính dược r chú ý IOE là tam giác vuông ở E áp dụng pitago là được. 
đây là cách giải khác sau khi mình hiểu trình độ của bạn 
a) cm ct S=pr.từ tâm i bạn hạ ie ứng với bc, ì ứng vớiab ,ih ứng với ac .đặt be=z .ah=x,hc=y ta có x+y=b ,y+z=a,z+x=c.từ đó tính được x.y.z .với chú ý Sabc=2Sbie+2Sahi+2Sihc.ta có ct trên 
Từ đó ta có S=pr=bc/c >r=2bc/a+b+c. 
(r+R)2=a+r=2bc+a2+ab+ac/a+b+c.chú ý a2=b2+c2 ta có kết quả câu a 
câu b.c thì với gợi ý trên bạn cũng có thể tự làm

Trần Anh Dũng
11 tháng 4 2016 lúc 20:42

Tự hỏi tự trả lời .

Nguyễn Thị Bích Ngọc
Xem chi tiết
M U N
Xem chi tiết
Đoàn Đức Hà
23 tháng 5 2021 lúc 21:39

\(h=\sqrt{b^2-\frac{a^2}{4}}\Rightarrow S=\frac{1}{2}ah=\frac{1}{2}a\sqrt{b^2-\frac{a^2}{4}}\)

\(R=\frac{abb}{4S}=\frac{ab^2}{\sqrt{4b^2-a^2}.a}=\frac{b^2}{\sqrt{4b^2-a^2}}\)

\(r=\frac{S}{p}=\frac{a\sqrt{b^2-\frac{a^2}{4}}}{a+2b}\)

Khách vãng lai đã xóa
Anh Dũng
Xem chi tiết
Hoàng hôn  ( Cool Team )
10 tháng 4 2020 lúc 8:29

Bài toán phụ: Cho tam giác ABC có \(\widehat{A}=120^o\). Khi đó BC2=AB2+AC2+AB.AC

Chứng minh: Gọi H là hình chiếu của C trên  AB

\(AH=\frac{1}{2}AC;CH=\frac{\sqrt{3}}{2}AC\left(1\right)\)

Theo định lý Pytago, ta có: BC2=BH2+CH(2)

Từ (1)(2) => BC2=(AB+AH)2+CH2=\(\left(AB+\frac{1}{2}AC\right)^2+\left(\frac{\sqrt{3}}{2}AC\right)^2\)

\(=AB^2+AB\cdot AC+\frac{1}{4}AC^2+\frac{3}{4}AC^2=AB^2+AC^2+AB\cdot AC\)

Không mất tính tổng quát giả sử M thuộc cung \(\widebat{BC}\) (không chứa A) của (O) 

Chứng minh được MA=MB+MC

=> MA2=MB2+MC2+2.MB.MC

=> MA2+MB2+MC2=2(MB2+MC2+MB.MC)(3)

Theo BĐ1 ta có: MB2+MC2+MB.MC=BC2

=> MB2+MC2+MB.MC=3R2

Từ (1) (2) => MA2+MB2+MC2=6R2

Khách vãng lai đã xóa
Đức Lộc Bùi
Xem chi tiết
GG boylee
Xem chi tiết