Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
huy tạ
Xem chi tiết
huy tạ
Xem chi tiết
Tô Hoài Dung
Xem chi tiết
nguyen thi thuy trang
19 tháng 10 2016 lúc 21:49

<=> \(\left(\sqrt{x+2}\right)^2\)> x2

<=>  \(x+2>x^2\)

<=> \(-\left(x^2-x-2\right)>0\)

<=>\(x^2-x-2< 0\)

<=> \(x^2-2x+x-2< 0\)

<=> \(\left(x-2\right)\left(x+1\right)< 0\) vì 2 tích nhân với nhau nhỏ hơn 0 nên 

<=> \(\orbr{\begin{cases}x-2>0\\x+1< 0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x>2\\x< -1\end{cases}}\) 

và \(\orbr{\begin{cases}x-2< 0\\x+1>0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x< 2\\x>-1\end{cases}}\)

Tô Hoài Dung
20 tháng 10 2016 lúc 13:24

Mình nhập 0;1 nó cho sai!!

lili hương
Xem chi tiết
Nguyễn Việt Lâm
2 tháng 7 2020 lúc 17:09

1.

\(\Leftrightarrow2.4^x-5.2^x+2\le0\)

Đặt \(2^x=t>0\Rightarrow2.t^2-5t+2\le0\)

\(\Rightarrow\frac{1}{2}\le t\le2\Rightarrow\frac{1}{2}\le2^x\le2\)

\(\Rightarrow-1\le x\le1\)

2.

\(\Leftrightarrow\left\{{}\begin{matrix}x\left(5-x\right)>0\\x\left(5-x\right)< 6\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}0< x< 5\\\left[{}\begin{matrix}x< 2\\x>3\end{matrix}\right.\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}0< x< 2\\3< x< 5\end{matrix}\right.\)

3.

\(\Leftrightarrow1\ge\left(\sqrt{6}+\sqrt{5}\right)^{x-1}.\left(\sqrt{6}+\sqrt{5}\right)^{2x-5}\)

\(\Leftrightarrow\left(\sqrt{6}+\sqrt{5}\right)^{3x-6}\le1\)

\(\Leftrightarrow3x-6\le0\Rightarrow x\le2\)

Nguyễn Việt Lâm
2 tháng 7 2020 lúc 17:17

4.

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge-2\\1>3^{-x}.3^{\sqrt{x+2}}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge-2\\3^{\sqrt{x+2}-x}< 1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge-2\\\sqrt{x+2}-x< 0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge-2\\\sqrt{x+2}\le x\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\x+2< x^2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\x^2-x-2>0\end{matrix}\right.\) \(\Rightarrow x>2\)

5.

\(\Leftrightarrow\left(\frac{4}{3}\right)^{2x-1}.\left(\frac{4}{3}\right)^{-2x^2+x}\ge1\)

\(\Leftrightarrow\left(\frac{4}{3}\right)^{-2x^2+3x-1}\ge1\)

\(\Leftrightarrow-2x^2+3x-1\ge0\)

\(\Rightarrow\frac{1}{2}\le x\le1\)

Nguyễn Việt Lâm
2 tháng 7 2020 lúc 17:21

6.

\(\Leftrightarrow\left\{{}\begin{matrix}x>-1\\\frac{1}{2}log_2\left(x+7\right)>log_2\left(x+1\right)\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x>-1\\\sqrt{x+7}>x+1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x>-1\\x+7>x^2+2x+1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x>-1\\x^2+x-6< 0\end{matrix}\right.\) \(\Rightarrow-1< x< 2\)

7.

\(\left(\frac{1}{5}\right)^{x^2-2x}\ge\left(\frac{1}{5}\right)^3\)

\(\Leftrightarrow x^2-2x\le3\)

\(\Leftrightarrow x^2-2x-3\le0\Rightarrow-1\le x\le3\)

\(\Rightarrow x=\left\{1;2;3\right\}\Rightarrow\) có 3 nghiệm nguyên dương

Kimian Hajan Ruventaren
Xem chi tiết
Ngô Thành Chung
16 tháng 2 2021 lúc 20:41

a, \(\dfrac{x-2}{x+1}\ge\dfrac{x+1}{x-2}\) 

⇔ \(\dfrac{\left(x-2\right)^2-\left(x+1\right)^2}{\left(x-1\right)\left(x+2\right)}\ge0\)

⇔ \(\dfrac{3-6x}{\left(x+1\right)\left(x-2\right)}\) ≥ 0

⇔ \(\dfrac{2x-1}{\left(x+1\right)\left(x-2\right)}\) ≤ 0

⇔ \(\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge\dfrac{1}{2}\\-1< x< 2\end{matrix}\right.\\\left\{{}\begin{matrix}x\le\dfrac{1}{2}\\\left[{}\begin{matrix}x< -1\\x>2\end{matrix}\right.\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\dfrac{1}{2}\le x< 2\\x< -1\end{matrix}\right.\)

Vậy tập nghiệm là \(\left(-\infty;-1\right)\cup\) \(\left[\dfrac{1}{2};2\right]\)\ {2}

Bạn có thể biến cái ngoặc vuông kia (ở chỗ số 2) thành ngoặc tròn

Còn vì sao mình không biến cái ngoặc vuông kia (ở chỗ số 2) thành ngoặc tròn thì đó là một câu chuyện dài

b, tương tự, chuyển vế đổi dấu 

 

 

Hồ Thị Hải Yến
Xem chi tiết
Kimian Hajan Ruventaren
Xem chi tiết
Quách Uyên Thy
Xem chi tiết
Kimian Hajan Ruventaren
Xem chi tiết