Cho x thuộc Z.CMR M là số chính phương biết M=[x+1].[x+3].[x+6].[x+4]+9
OLM giải giùm e dj a
Cho x thuộc Z.CMR M là số chính phương biết:
M=[x+1].[x+3].[x+4].[x+6]
Cho x,y thuộc Z,chứng minh rằng các số sau là số chính phương:
M=(x+1)(x+3)(x+4)(x+6)+9
N=(x-y)(x-2y)(x-3y)(x-4y)+y^4
=[(x+1)(x+6)][(x+3)(x+4)]+9
Sau khi nhân thì sẽ có kết quả sau : =(x2+7x+6)(x2+7x+12)+9 . Sẽ đặt ẩn phụ là (x2+7x+6) = a . suy ra a2+6a+9=(x+3)2 rồi lại thay ngược lại thì có kết quả cuối cùng là (x2+7x+9)2=>M là số chính phương
Giúp cai nka tối mik phải đi học
Bài 1:CMR các số sau là số chính phương:
a, A= 1...1(2018 số 1) * 2...2(2019 số 2) *5
b,n*(n+1)*(n+2)*(n+3)+1 biết n thuộc Z+
Bài 2:CMR: vs n thuộc Z+ và n>6 thì số A là số chính phương
A=1+ 2*6*10*....*(4n-2) / (n+5)*(n+6)*....*(2n)
Bài 3: Tìm x,y thuộc Z thỏa mãn x^2+x+6=y^2
Bài 4 Cho m,n thuộc Z+ thỏa mãn 3m^2+m=4n^2+n. CMR
a, (m-n,3m+3n+1)=9
(n-m,4m+4n+1)=1
b,m-n vs 3m+3n+1 và 4m+4n+1 đều lá số chính phương
Bài 1:CMR các số sau là số chính phương:
a, A= 1...1(2018 số 1) * 2...2(2019 số 2) *5
b,n*(n+1)*(n+2)*(n+3)+1 biết n thuộc Z+
Bài 2:CMR: vs n thuộc Z+ và n>6 thì số A là số chính phương
A=1+ 2*6*10*....*(4n-2) / (n+5)*(n+6)*....*(2n)
Bài 3: Tìm x,y thuộc Z thỏa mãn x^2+x+6=y^2
Bài 4 Cho m,n thuộc Z+ thỏa mãn 3m^2+m=4n^2+n. CMR
a, (m-n,3m+3n+1)=9
(n-m,4m+4n+1)=1
b,m-n vs 3m+3n+1 và 4m+4n+1 đều lá số chính phương
Giúp cái nha chiều đi học rồi
Cho 3 số nguyên x,y,z sao cho x=y+z.CMR: 2(xy+xz-yz) là tổng của 3 số chính phương
Mình đang học về chuyên đề số chính phương có vài câu hỏi khó nhờ các bạn giải giúp trước thứ Ba ngày 26/1/2016 cảm ơn các bạn nhiều lắm !!!
Câu 1: a) Chứng minh 11...122...25 là số chính phương (với n số 1 và n+1 số 2)
b) Cho B = 44...4 (100 số 4) = 4 x 11...1 (100 số 1) là số chính phương. Chứng minh 11...1 (100 số 1) là số chính phương
Câu 2: a) Cho các số A= 11.....11 (2m chữ số 1) ; B = 11...11 (m+1 số 1) ; C = 66...6 (m chữ số 6)
CMR: A+B+C+8 là số chính phương
b) CMR: Với mọi x,y thì A = (x+y)(x+2y)(x+3y)(x+4y) + y4 là số chính phương
Co ai giup minh ko chang le newbie ko dc giup sao
C/m rằng với mọi x,y là số nguyên thì: A=(x+y).(x+2y).(x+3y).(x+4y)+y4 là 1 số chính phương?!
Cám ơn bạn trước nhé, ai biết thì trả lời giùm~Thanks
Ta có:
\(A=\left(x+y\right)\left(x+2y\right)\left(x+3y\right)\left(x+4y\right)+y^4\)
\(=\left(x^2+5xy+4y^2\right)\left(x^2+5xy+6y^2\right)+y^4\)
Đặt \(t=x^2+5xy+5y^2\) ta đc:
\(A=\left(t-y^2\right)\left(t+y^2\right)+y^4\)
\(=t^2-y^4+y^4\)
\(=t^2=\left(x^2+5xy+5y^2\right)^2\)
Vì \(x,y,z\in Z\) nên \(x^2\in Z;5xy\in Z;5y^2\in Z\)
\(\Rightarrow x^2+5xy+5y^2\in Z\)
Đpcm
Cho x thuộc Z.CMR
A=\(x^4-4x^3-2x^2+12x+9\) là bình phương của 1 số nguyên
\(A=x^4-4x^3-2x^2+12x+9\\ =x^2\left(x^2-4x-2+\dfrac{12}{x}+\dfrac{9}{x^2}\right)\\ =x^2\left[\left(x^2-6+\dfrac{9}{x^2}\right)-\left(4x-\dfrac{12}{x}\right)+4\right]\\ =x^2\left(x-\dfrac{3}{x}-2\right)^2\\ =\left[x\left(x-\dfrac{3}{x}-2\right)\right]^2\\ =\left(x^2-3-2x\right)^2\)
Do \(x\in Z\) nên \(\Rightarrow x^2-3-2x\) là số nguyên.
Vậy \(A=\left(x^2-3-2x\right)^2\)là bình phương 1 số nguyên.
Giải giúp mình mấy bài này nhé, mình cảm ơn
Bài 1: a,
Cho D=1+x+x2+x3+…+x2015 (x thuộc N*)
CMR:D chia hết cho x+1
b, tìm x, biết: 38-( |x+10|+13)=(-6)20:(99*410)
Bài 2: a, Biết rằng với số tự nhiên n có 2 chữ số thì 5n+6 và 8n+7 là 2 số không nguyên tố cùng nhau. Tìm ƯCLN(5n+6;8n+7)
b, Cho E= 51+52+53+...+5100.
E có là số chính phương không?
Thanks nhìu nha